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Abstract

Semiautomatic structures generalise automatic structures in the sense that for some
of the relations and functions in the structure one only requires the derived relations
and structures are automatic when all but one input are filled with constants. One
can also permit that this applies to equality in the structure so that only the sets of
representatives equal to a given element of the structure are regular while equality itself
is not an automatic relation on the domain of representatives. We look at semiautomatic
rings with automatic addition and comparison and we also examine arithmetic on ordinals
with semiautomatic multiplication.
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F.4.1 Mathematical Logic
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1 Introduction

The study of automatic structures was initiated by the pioneering works of Hodgson
[Hod76; Hod83], Khoussainov and Nerode [KN94] and Blumensath and Grädel [BG00].
In mathematics and computer science, it is of interest to classify structures in which
operations are computationally easy, with a low computational complexity.

For the various characterisations of automatic/regular sets we refer the reader to
resources on theory of computation such as [HMU06] and [Ste18].

Description 1. Relations over a base set 𝐴 ⊆ Σ∗ are usually encoded as subsets of 𝐴𝑛,
where 𝑛 is the arity of our relation. Given multiple inputs, we use the standard method
of encoding several strings synchronously. Let 𝑎 = 𝑎0𝑎1 ⋯ 𝑎𝑛 and 𝑏 = 𝑏0𝑏1 ⋯ 𝑏𝑚 in 𝐴,
the convolution 𝑐𝑜𝑛𝑣(𝑎, 𝑏) is defined as 𝑐0𝑐1 ⋯ 𝑐max(𝑚,𝑛) where

• 𝑐𝑘 = (𝑎𝑘
𝑏𝑘

) if 𝑘 ≤ 𝑚 and 𝑘 ≤ 𝑛,

• 𝑐𝑘 = (𝑎𝑘
# ) if 𝑚 < 𝑘 ≤ 𝑛, and

• 𝑐𝑘 = (#
𝑏𝑘

) if 𝑛 < 𝑘 ≤ 𝑚,

with # being a fixed padding character not in Σ. This process naturally identifies 𝐴 × 𝐴
with the set of all convolutions {𝑐𝑜𝑛𝑣(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝐴} and is easily generalised to arities
greater than 2.

A relation 𝑅 ⊆ 𝐴𝑛 is automatic if its representation as indicated is a regular set, while
a function 𝑓 ∶ 𝐴𝑛 → 𝐴 is automatic if its graph (as a subset of 𝐴𝑛+1) is regular.

1.1 Automata on group-like structures

Groups, semigroups and monoids are characterised by having a single binary operation
over a base set [Bou07]. Groups have been studied in mathematics for centuries in their
own right, but only recently have the connection between group theory and automata
theory been made [Hod76; Hod83; KN94; Eps+92].

We first introduce the framework proposed by Hodgson [Hod76; Hod83] and Khous-
sainov and Nerode [KN94].
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Definition 2. We call a semigroup (𝐺, ∘) fully automatic iff

• 𝐺 is regular over Σ∗ where Σ is a finite alphabet,

• ∘ ∶ 𝐺 × 𝐺 → 𝐺 is an automatic function.

Additionally, if (𝐻, ⋆) is isomorphic to (𝐺, ∘) we call 𝐻 fully automatic too. Fully
automatic monoids and groups are defined analogously.

Remark. In the original literature, the authors referred to this definition as just “auto-
matic”. We follow the convention in [Ste18] and use the term “fully automatic” in
the sense that the full semigroup operation is automatic. At the same time, we also
disambiguate it from the definitions introduced below.

In [Eps+92], the authors argued that the formalisation in Definition 2 is, from the
point of view of finitely-generated groups, too restrictive, and proposed the following
definition.

Definition 3. Let (𝐺, ∘) be a semigroup generated by a finite subset 𝐹 ⊆ 𝐺. The
semigroup (𝐺, ∘) is automatic iff

• 𝐺 is a regular subset of 𝐹 ∗,

• each 𝑥 ∈ 𝐺 has a unique representative in 𝐹 ∗, and

• for each 𝑦 ∈ 𝐺, the multiplication map (∘𝑦) ∶ 𝐺 → 𝐺 defined as 𝑥 ↦ 𝑥 ∘ 𝑦 is
automatic.

By representing elements as words over generators, the representatives are more
meaningful. Note that this definition is, in the case of finitely-generated groups, weaker
than Definition 2, as the example illustrates.

Example 4. Consider the semigroup (Δ∗, ∘) where 2 ≤ |Δ| < ∞ and ∘ denotes concaten-
ation of words. We can verify that this semigroup satisfies Definition 3 as for each 𝑦 ∈ Δ∗,
the map 𝑥 ↦ 𝑥𝑦 is automatic. This semigroup fails to satisfy Definition 2 however, as in
order to recognise {𝑐𝑜𝑛𝑣(𝑥, 𝑦, 𝑧) ∶ 𝑥𝑦 = 𝑧} using a synchronous finite automata, we have
to store 𝑦 as we are reading in 𝑥 and comparing it with 𝑧. The problem is that the length
of 𝑦 is unbounded, so the graph of ∘ cannot be recognised with finitely many states. In
fact this group has no fully automatic representation.

Kharlampovich, Khoussainov and Miasnikov were the first to formally consider the
related concept of a Cayley automatic group [KKM11]. It is sometimes also called graph
automatic because it considers the Cayley graph of a group as the automatic structure.
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Definition 5. A finitely generated group 𝐺 generated by 𝐹 is Cayley automatic iff
the following conditions hold for some finite alphabet Σ,

• representatives of 𝐺 form a regular subset 𝐻 of Σ∗,

• each 𝑥 ∈ 𝐺 has a unique representative in 𝐻,

• for each 𝑦 ∈ 𝐹, the right multiplication by 𝑦 map is an automatic map 𝐻 → 𝐻.

This is a generalisation of Definition 3, where we drop the condition that natural
representatives are chosen, that is Σ = 𝐹 the set of generators. This gives us a even
bigger class of automatic groups.

Example 6. The Heisenberg group ℋ3(ℤ) defined as

⎧{
⎨{⎩

⎛⎜⎜⎜
⎝

1 𝑎 𝑏
0 1 𝑐
0 0 1

⎞⎟⎟⎟
⎠

∶ 𝑎, 𝑏, 𝑐 ∈ ℤ
⎫}
⎬}⎭

is Cayley automatic (6.6 in [KKM11]), but not automatic (8.1.1 in [Eps+92]).

The low complexity of automata motivates the search for automatic presentations of
various algebraic structures. For example, the word problem for groups in general is
well-known to be undecidable. However, most reasonable formalisations of automatic
groups will have their word problem solvable with a quadratic time complexity [Eps+92;
KKM11].

1.2 General automatic structures

For general mathematical structures (𝐴, 𝑅1, 𝑅2, … , 𝑅𝑚, 𝑓1, 𝑓2, … , 𝑓𝑛), where 𝐴 is a base
set, each 𝑅𝑖 is a relation over 𝐴 and 𝑓𝑗 a finitary function 𝐴𝑘 → 𝐴, we consider the more
general framework of Hodgson [Hod76; Hod83] and Khoussainov and Nerode [KN94].

Definition 7. A structure (𝐴, 𝑅1, 𝑅2, … , 𝑅𝑚, 𝑓1, 𝑓2, … , 𝑓𝑛) is automatic iff

• the set 𝐴 is regular in Σ∗ where Σ is some finite alphabet,

• all the relations 𝑅1, 𝑅2, … , 𝑅𝑚 are automatic, and

• all the functions 𝑓1, 𝑓2, … , 𝑓𝑛 are automatic.

In the spirit of Definition 2, we do not distinguish between structures that are automatic
and structures that are merely isomorphic to an automatic structure.
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Example 8. A fully automatic group (𝐺, 𝜀, ∘) satisfying Definition 2 is an automatic
structure.

Automatic structures are of mathematical interest due to their low computational
complexity and closure under first-order definability, as shown in [KN94].

Theorem 9. Any functions and relations that are definable using a formula of first-order
in terms of automatic functions and relations is again automatic. Furthermore there is an
effective procedure to construct the resultant automata from that used in the parameters
to define the function or relation.

1.3 Semiautomatic structures

Seeking more general ways to utilise finite automata for representing non-automatic
structures, Jain, Khoussainov, Stephan, Teng and Zou proposed semiautomatic structures
as a generalisation of Definition 7 [Jai+17].

Definition 10. Let 𝑓 ∶ 𝑅𝑛 → 𝑅 be a function. 𝑓 is semiautomatic iff fixing 𝑛 − 1
inputs, the resultant 𝑅 → 𝑅 function is automatic. The definition of a semiautomatic
relation is analogous.

Definition 11. A structure (𝐴, 𝑓1, 𝑓2, … , 𝑓𝑚, 𝑅1, 𝑅2, … , 𝑅𝑛; 𝑔1, 𝑔2, … , 𝑔𝑝, 𝑆1, 𝑆2, … , 𝑆𝑞)
is semiautomatic iff

• the set 𝐴 is regular in Σ∗ where Σ is some finite alphabet,

• all the functions and relations before the semicolon 𝑓1, 𝑓2, … , 𝑓𝑚, 𝑅1, 𝑅2, … , 𝑅𝑛

are automatic, and

• all the functions and relations after the semicolon 𝑔1, 𝑔2, … , 𝑔𝑝, 𝑆1, 𝑆2, … , 𝑆𝑞 are
semiautomatic.

1.4 Ordinals

For readers familiar with set theory, this section can be skipped without loss of continuity.

Definition 12. A set 𝛼 is an ordinal iff every 𝛽 ∈ 𝛼 is a subset of 𝛼 and (𝛼, ∈) is a well
order.
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Ordinals can be thought as equivalence classes of well ordered sets. They naturally
describe how many times a process is iterated, possibly transfinitely many times. The
class of all ordinals is also well ordered by membership, and whenever 𝛼, 𝛽 are ordinals,
𝛼 < 𝛽 denotes 𝛼 ∈ 𝛽.

Description 13 (Ordinal arithmetic).

• The sum of two ordinals 𝛼 + 𝛽 expresses the order type of 𝛼 placed before 𝛽, which
is defined as the ordinal order-isomorphic to ({0} × 𝛼 ∪ {1} × 𝛽, ≺) equipped with
dictionary ordering.

• The product of two ordinals 𝛼 ⋅ 𝛽 can be thought of as 𝛽 copies of 𝛼, which is
defined as the ordinal order-isomorphic to the set 𝛽 × 𝛼 equipped with dictionary
ordering.

• Ordinal exponentiation 𝛼𝛽 is repeated multiplication, and is defined as 𝛼 multiplied
by itself 𝛽 many times.

We note that the initial segment containing the first 𝜔 many ordinals is exactly
the natural numbers, which add and multiply just like natural numbers, therefore we
sometimes use 𝜔 to refer to the set of natural numbers.

For a comprehensive text on axiomatic set theory, we refer the reader to [Kun80].
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2 Semiautomatic ordinal structures

2.1 Representations with automatic addition

Delhommé proved the following characterisation of automatic ordinals in [Del04].

Theorem 14 (Delhommé). Let 𝛼 be an ordinal, (𝛼, +, <) is automatic iff 𝛼 < 𝜔𝜔. Here
the domain of + is the set of all pairs (𝛽, 𝛾) with 𝛽 + 𝛾 < 𝛼.

We illustrate how any ordinal 𝛼 < 𝜔𝜔 is automatic with an example.

Example 15. The structure (𝜔3, +, <) is automatic. Any ordinal below 𝜔3 is of the form
𝜔2⋅𝑐2+𝜔⋅𝑐1+𝑐0 with 𝑐0, 𝑐1, 𝑐2 ∈ ℕ. We can express any ordinal 𝛼 = 𝜔2⋅𝑎2+𝜔⋅𝑎1+𝑎0 < 𝜔3

as 𝑐𝑜𝑛𝑣(𝑎0, 𝑎1, 𝑎2). Consider 𝛼, 𝛽 ∈ 𝜔3, where 𝛼 = 𝜔2 ⋅ 𝑎2 + 𝜔 ⋅ 𝑎1 + 𝑎0 and 𝛽 =
𝜔2 ⋅ 𝑏2 + 𝜔 ⋅ 𝑏1 + 𝑏0. The sum 𝛼 + 𝛽 can be given by

𝛼 + 𝛽 =

⎧{{
⎨{{⎩

𝜔2 ⋅ (𝑎2 + 𝑏2) + 𝜔 ⋅ 𝑏1 + 𝑏0 if 𝑏2 > 0

𝜔2 ⋅ 𝑎2 + 𝜔 ⋅ (𝑎1 + 𝑏1) + 𝑏0 if 𝑏2 = 0, 𝑏1 > 0

𝜔2 ⋅ 𝑎2 + 𝜔 ⋅ 𝑎1 + (𝑎0 + 𝑏0) if 𝑏2 = 0, 𝑏1 = 0

because for any 𝑛, 𝑚 ∈ ℕ with 𝑛 > 𝑚, we have 𝜔𝑚 + 𝜔𝑛 = 𝜔𝑛. This means we can define
addition on our representatives using the expression given above as

𝑐𝑜𝑛𝑣(𝑎0, 𝑎1, 𝑎2) + 𝑐𝑜𝑛𝑣(𝑏0, 𝑏1, 𝑏2) =

⎧{{
⎨{{⎩

𝑐𝑜𝑛𝑣(𝑏0, 𝑏1, 𝑎2 + 𝑏2) if 𝑏2 > 0

𝑐𝑜𝑛𝑣(𝑏0, 𝑎1 + 𝑏1, 𝑎2) if 𝑏2 = 0, 𝑏1 > 0

𝑐𝑜𝑛𝑣(𝑎0 + 𝑏0, 𝑎1, 𝑎2) if 𝑏2 = 0, 𝑏1 = 0

and since there exists an automatic representation of (ℕ, +, <), the addition function is
in fact automatic, as it only performs checks that are automatic in our presentation of ℕ.
Because comparison of ordinals below 𝜔3 is first-order definable in terms of addition, <
is an automatic relation.

Any 𝛼 < 𝜔𝜔 by definition of ordinal exponentiation is bounded above by 𝜔𝑛 for some
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𝑛 ∈ 𝜔. Since Example 15 generalises to 𝑛 naturally, we consider the natural embedding
of (𝛼, +, <) in (𝜔𝑛, +, <).

Theorem 14 came before the notion of semiautomatic structures was invented. Our main
result here is that using the same representation, we get semiautomatic multiplication
without losing automaticity of the other operations.

Theorem 16. For any 𝛼 < 𝜔𝜔, the structure (𝛼, +, <, =; ⋅) is semiautomatic. Similarly
to Theorem 14 we only consider the domain of + to be all pairs (𝛽, 𝛾) with 𝛽 + 𝛾 < 𝛼
and the domain of ⋅ to be all pairs (𝛽, 𝛾) with 𝛽 ⋅ 𝛾 < 𝛼.

Remark. As there is no automatic representation of (𝜔, ⋅, =), in general, for any infinite
ordinal we cannot move ⋅ left of the semicolon.

Again without loss of generality we consider 𝛼 = 𝜔𝑛 for some 𝑛 ∈ 𝜔. We use a
representation similar to that illustrated in Example 15.

2.1.1 Left multiplication

Lemma 17. Using the representation, for any fixed 𝛽 ∈ 𝜔𝑛 the map 𝛾 ↦ 𝛽 ⋅ 𝛾 restricted
to all 𝛾 satisfying 𝛽 ⋅ 𝛾 < 𝜔𝑛 is automatic.

Proof. First express the ordinals in normal form

𝛽 = 𝜔𝑘 ⋅ 𝑏𝑘 + 𝜔𝑘−1 ⋅ 𝑏𝑘−1 + ⋯ + 𝜔 ⋅ 𝑏1 + 𝑏0

𝛾 = 𝜔𝑙 ⋅ 𝑐𝑙 + 𝜔𝑙−1 ⋅ 𝑐𝑙−1 + ⋯ + 𝜔 ⋅ 𝑐1 + 𝑐0

where 𝑏𝑘, 𝑐𝑙 > 0. We then make the following general observation that

𝛽 ⋅ 𝛾 = 𝛽 ⋅ 𝜔𝑙 ⋅ 𝑐𝑙 + 𝛽 ⋅ 𝜔𝑙−1 ⋅ 𝑐𝑙−1 + ⋯ + 𝛽 ⋅ 𝜔 ⋅ 𝑐1 + 𝛽 ⋅ 𝑐0

= (𝜔𝑘 ⋅ 𝑏𝑘 + 𝜔𝑘−1 ⋅ 𝑏𝑘−1 + ⋯ + 𝜔 ⋅ 𝑏1 + 𝑏0) ⋅ 𝜔𝑙 ⋅ 𝑐𝑙

+ (𝜔𝑘 ⋅ 𝑏𝑘 + 𝜔𝑘−1 ⋅ 𝑏𝑘−1 + ⋯ + 𝜔 ⋅ 𝑏1 + 𝑏0) ⋅ 𝜔𝑙−1 ⋅ 𝑐𝑙−1

+ …

+ (𝜔𝑘 ⋅ 𝑏𝑘 + 𝜔𝑘−1 ⋅ 𝑏𝑘−1 + ⋯ + 𝜔 ⋅ 𝑏1 + 𝑏0) ⋅ 𝜔 ⋅ 𝑐1

+ (𝜔𝑘 ⋅ 𝑏𝑘 + 𝜔𝑘−1 ⋅ 𝑏𝑘−1 + ⋯ + 𝜔 ⋅ 𝑏1 + 𝑏0) ⋅ 𝑐0

= 𝜔𝑘+𝑙 ⋅ 𝑐𝑙 + 𝜔𝑘+𝑙−1 ⋅ 𝑐𝑙−1 + ⋯ + 𝜔𝑘+1 ⋅ 𝑐1

+ (𝜔𝑘 ⋅ (𝑏𝑘 ⋅ 𝑐0) + 𝜔𝑘−1 ⋅ 𝑏𝑘−1 + ⋯ + 𝜔𝑏1 + 𝑏0) ⋅ 1𝑐0≠0

where 1𝑐0≠0 is 1 is 𝑐0 ≠ 0 and 0 otherwise.
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If our assumptions on the domain of 𝛾 holds, then 𝑘 + 𝑙 < 𝑛. We have

𝛽 ⋅ 𝑐𝑜𝑛𝑣(𝑐0, 𝑐1, … , 𝑐𝑙, 0, … , 0)

= 𝑐𝑜𝑛𝑣(
𝑘+1 many
⏞0, … , 0 , 𝑐1, 𝑐2, … , 𝑐𝑙, 0, … , 0)

+
⎧{
⎨{⎩

0 if 𝑐0 = 0

𝑐𝑜𝑛𝑣(𝑏0, 𝑏1, … , 𝑏𝑘 − 1, 𝑏𝑘 ⋅ 𝑐0, 0, … , 0) otherwise

We see that this function is automatic as 𝛽 is fixed so each 𝑏𝑖 can be treated as constant,
therefore computing 𝑏𝑘 ⋅𝑐0 given 𝑐0 is automatic, in addition the checks are also automatic
and the final addition is also automatic due to Theorem 14.

2.1.2 Right multiplication

We fix 𝛾 = 𝜔𝑙 ⋅ 𝑐𝑙 + ⋯ + 𝜔 ⋅ 𝑐1 + 𝑐0 an ordinal in normal form, then for any 𝛽,

𝛽 ⋅ 𝛾 = 𝛽 ⋅ 𝜔𝑙 ⋅ 𝑐𝑙 + ⋯ + 𝛽 ⋅ 𝜔 ⋅ 𝑐1 + 𝛽 ⋅ 𝑐0.

Hence we can express right-multiplication by 𝛾 as a finite composition of the following

• right-multiplication by 𝜔,

• right-multiplication by fixed constants 𝑐0, 𝑐1, … , 𝑐𝑙,

• ordinal additions.

For we are using a representation of 𝜔𝑛 where Theorem 14 holds, ordinal addition and
right-multiplication by fixed constants (implemented as repeated addition) is automatic,
and we are reduced to showing the following.

Lemma 18. Using the same representation, the map 𝛽 ↦ 𝛽 ⋅ 𝜔 restricted to all 𝛽
satisfying 𝛽 ⋅ 𝜔 < 𝜔𝑛 is automatic.

Proof. For simplicity we demonstrate with the case 𝑛 = 4. Let 𝛽 = 𝜔3⋅𝑏3+𝜔2⋅𝑏2+𝜔⋅𝑏1+𝑏0
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be in normal form, using the rules of ordinal multiplication we have

𝛽 ⋅ 𝜔 = (𝜔3 ⋅ 𝑏3 + 𝜔2 ⋅ 𝑏2 + 𝜔 ⋅ 𝑏1 + 𝑏0) ⋅ 𝜔

=

⎧
{
{
{
{
⎨
{
{
{
{
⎩

𝜔4 if 𝑏3 > 0

𝜔3 if 𝑏3 = 0, 𝑏2 > 0

𝜔2 if 𝑏3 = 0, 𝑏2 = 0, 𝑏1 > 0

𝜔 if 𝑏3 = 0, 𝑏2 = 0, 𝑏1 = 0, 𝑏0 > 0

0 otherwise .

If our assumptions on the domain of 𝛽 holds, then 𝑏3 = 0, and we have

𝑐𝑜𝑛𝑣(𝑏0, 𝑏1, 𝑏2, 0) ⋅ 𝜔 =

⎧{{{
⎨{{{
⎩

𝑐𝑜𝑛𝑣(0, 0, 0, 1) if 𝑏2 > 0

𝑐𝑜𝑛𝑣(0, 0, 1, 0) if 𝑏2 = 0, 𝑏1 > 0

𝑐𝑜𝑛𝑣(0, 1, 0, 0) if 𝑏2 = 0, 𝑏1 = 0, 𝑏0 > 0

𝑐𝑜𝑛𝑣(0, 0, 0, 0) otherwise

where only automatic checks on the input is used.

Since multiplication on both sides can be made semiautomatic without losing what we
already have in this representation, Theorem 16 follows.

2.2 Representations with semiautomatic addition

By Theorem 14, any ordinal 𝛼 ≥ 𝜔𝜔 cannot admit automatic addition and comparison,
but by allowing our operations to be semiautomatic, we get more ordinals. Our main
goal in this section would be to show that we can get a representation of 𝜔𝜔 in which
addition, multiplication and equality are simultaneously semiautomatic.

Theorem 19. The structure (𝜔𝜔; +, <, ⋅, =) is semiautomatic.

Instead of tackling this straight on, we present a related result.

2.2.1 Polynomials over ℕ

This result was only sketched as part of Theorem 37 in [Jai+17], where the authors
presented a more general construction.

Theorem 20. The semiring of polynomials over ℕ (ℕ[𝑥]; +, ⋅, =) is semiautomatic.
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Proof. We let 𝐴 ⊆ Σ∗ be an semiautomatic representation of (ℕ, +, <; ⋅) and let ⊕, ⊗, •
be symbols outside Σ.

We represent elements of ℕ[𝑥] as strings in 𝐵 = {𝜀} ∪ ((𝐴 ⋅ {•})∗ ⋅ 𝐴), where we encode
nonzero polynomials like 𝑐𝑛𝑥𝑛 + ⋯ + 𝑐1𝑥 + 𝑐0 as 𝑐0 • 𝑐1 • … • 𝑐𝑛, where 𝑐𝑛 ≠ 0.

For each string 𝑤 ∈ 𝐶 = {𝜀} ∪ ((𝐵 ⋅ {⊕, ⊗})∗ ⋅ 𝐵) we assign a value 𝑣𝑎𝑙(𝑤) in 𝐵 as
follows

• 𝑣𝑎𝑙(𝜀) is 0 which is represented by 𝜀;

• For 𝑤 ∈ 𝐵, 𝑣𝑎𝑙(𝑤) is the base element with trailing zeroes stripped;

• 𝑣𝑎𝑙(𝑤 ⊕ 𝜀) = 𝑣𝑎𝑙(𝑤);

• 𝑣𝑎𝑙(𝑤 ⊗ 𝜀) is 0 which is represented by 𝜀;

• 𝑣𝑎𝑙(𝑤 ⊕ 𝑣) = 𝑣𝑎𝑙(𝑤) + 𝑣𝑎𝑙(𝑣) when 𝑣 ∈ 𝐵;

• 𝑣𝑎𝑙(𝑤 ⊗ 𝑣) = 𝑣𝑎𝑙(𝑤) ⋅ 𝑣𝑎𝑙(𝑣) when 𝑣 ∈ 𝐵 and 𝑣 does not represent 0.

Note that 𝑣𝑎𝑙 is not automatic, but we can define 𝑣𝑎𝑙𝑛 such that 𝑣𝑎𝑙𝑛(𝑤) = 𝑣𝑎𝑙(𝑤) for
enough 𝑤. For each natural number 𝑛, 𝑤 ∈ 𝐶, define 𝑣𝑎𝑙𝑛(𝑤) = 𝑣𝑎𝑙(𝑤) if 𝑤 represents
a polynomial of degree 𝑛 or less and all coefficients are below 𝑛. In the other case
𝑣𝑎𝑙𝑛(𝑤) = @ if the degree of 𝑤 is above 𝑛 or some coefficient greater or equal to 𝑛 is
encountered. Notice that 𝑣𝑎𝑙𝑛 is automatic as whenever its value goes to @, it remains at
@ until a multiplication with zero occurs. In any other case the automaton only has to
handle finitely many possible values. The finiteness property in here still holds because
arithmetic in ℕ has neither additive inverses nor zero divisors.

For 𝑣 = ∑𝑖≤deg(𝑣) 𝑐𝑖𝑥𝑖 we define 𝑑(𝑣) = max(deg(𝑣), 𝑐𝑖). The rest of the argument is
similar to that of Theorem 37 in [Jai+17]. We can check if 𝑤 ∈ 𝐶 is equal to a fixed value
𝑣 by comparing 𝑣𝑎𝑙𝑑(𝑤)(𝑤) with 𝑣. We can also do addition with a fixed 𝑣 as follows. If
𝑣𝑎𝑙𝑑(𝑣)(𝑤) ≠ @ then we represent 𝑣 + 𝑤 using the result, else we use 𝑣 ⊕ 𝑤. If 𝑣 ≠ 𝜀 the
product 𝑣 ⋅ 𝑤 are represented by 𝜀, otherwise we represent the product with 𝑣 ⊗ 𝑤.

2.2.2 Going back to 𝜔𝜔

By thinking of ordinals below 𝜔𝜔 as natural polynomials “evaluated” at 𝜔, the corres-
ponding proof for Theorem 19 is mostly similar to that of Theorem 20, but we need to
make a few concessions.

As ordinal addition and multiplication are not commutative, we have to introduce
more symbols ⊕𝑙, ⊕𝑟, ⊗𝑙, ⊗𝑟 and expand the definition of 𝑣𝑎𝑙 accordingly. So for example
𝑣𝑎𝑙(𝑣 ⊕𝑙 𝑤) = 𝑣𝑎𝑙(𝑣) + 𝑣𝑎𝑙(𝑤) and 𝑣𝑎𝑙(𝑣 ⊕𝑟 𝑤) = 𝑣𝑎𝑙(𝑤) + 𝑣𝑎𝑙(𝑣).
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When adding and multiplying ordinals, arbitrarily large coefficients could disappear.
For instance, 𝑘 + 𝜔 = 𝜔 and 𝜔 ⋅ 𝑘 ⋅ 𝜔 = 𝜔 ⋅ 𝜔 no matter how large 𝑘 ∈ ℕ is. So in the
definition of 𝑣𝑎𝑙𝑛, we require more error conditions. Where our polynomial coefficients
were denoted using a semiautomatic representation of (ℕ, +, <; ⋅), we add a new symbol
⊙ which denotes “coefficient too large”, and when the result of an operation goes beyond
𝑛 we output ⊙ in place of the coefficient. Then the existing error case @ is relegated to
when the degree of the result becomes too large.

To see that comparison can also be made semiautomatic, fix 𝛽 < 𝜔𝜔, to see if 𝛼 ∈ 𝜔𝜔

satisfies 𝛼 < 𝛽, we can look at 𝑣𝑎𝑙𝑑(𝛽)(𝛼) and examine the coefficients.
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3 Semiautomatic ring structures

Rings are obtained by adding to an Abelian group a notion of multiplication.

Definition 21. (𝑅, +, ⋅, 0, 1) is a ring if (𝑅, +, 0) is an abelian group, (𝑅 ∖ {0} , ⋅, 1) is a
monoid and ⋅ distributes over +.

3.1 Golden ratio

In [Jai+17] the authors showed that the ring (ℤ(
√

𝑛), ℤ, +, <, =; ⋅) for every 𝑛 ∈ ℕ has a
semiautomatic presentation. The structure is best illustrated using a simple irrational,
so in this section 𝑢 denotes the Golden Ratio 1+

√
5

2 .

Theorem 22. The ordered ring (ℤ[𝑢], +, <, =; ⋅) has a semiautomatic presentation.

3.1.1 Isolating finiteness

Note that 3 = 𝑢−2 + 𝑢2 and 3 dominates all other coefficients, so given any 𝑎 = 𝑝 + 𝑞𝑢 ∈
ℤ[𝑢], with repeated applications of this identity, we can express 𝑎 as a longer (but still
finite) linear combination of powers of 𝑢

𝑎 = ∑
𝑖

𝑎𝑖𝑢𝑖

where each |𝑎𝑖| ≤ 2.

3.1.2 The representation

Appealing to earlier part, we represent 𝑎 ∈ ℤ[𝑢] as a sequence of integers 𝑎𝑛𝑎𝑛−1 ⋯ 𝑎𝑚

satisfying

• 𝑛 ≥ 0 ≥ 𝑚,

• 𝑎 = ∑𝑖 𝑎𝑖𝑢𝑖 with each |𝑎𝑖| ≤ 2.

Since 𝑢−1 = 𝑢 − 1, we are not representing extra elements.
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3.1.3 Tail bounds

Note that the geometric series ∑𝑖≤2 𝑢𝑖 converges to 𝑢3

𝑢−1 , so in particular the tail sum as
𝑖 decreases is bounded. Now let 𝑘′ ∈ ℕ such that 𝑘′ ≥ 2 ⋅ 2 ⋅ ∑𝑖≤2 𝑢𝑖. This allows us to
come up with a sign test algorithm for our representatives.

3.1.4 Sign test

Let 𝑎 = ∑𝑖=𝑚,…,0,…,𝑛 𝑎𝑖𝑢𝑖 ∈ ℤ[𝑢], the following pseudocode tests if 𝑎 > 0, 𝑎 = 0 or 𝑎 < 0.

Algorithm 1: Sliding over coefficients to test sign
1 initialise 𝑥, 𝑦 ← 0, 𝑖 ← 𝑛
2 while 𝑖 ≥ 𝑚 do
3 𝑎𝑖+1 ← 𝑎𝑖+1 + 𝑎𝑖+2
4 𝑎𝑖 ← 𝑎𝑖 + 𝑎𝑖+2
5 𝑎𝑖+2 ← 0
6 if 𝑎𝑖+1 > 𝑘′ ∨ 𝑎𝑖+2 > 𝑘′ then
7 halt with 𝑎 > 0
8 if 𝑎𝑖+1 < −𝑘′ ∨ 𝑎𝑖+2 < −𝑘′ then
9 halt with 𝑎 < 0

10 𝑖 ← 𝑖 − 1
11 determine sign by a finite case distinction over the values of 𝑥 and 𝑦

We basically go through coefficients 𝑎𝑖 with a sliding window of size 2, updating using
the relation 𝑢2 = 𝑢 + 1. By our tail bounds, the early termination always outputs the
correct answer. Furthermore by appealing to the characterisation of automatic functions
as those computable by linear-time one-tape Turing machines where input and output
start at the same position [Cas+12], this algorithm is automatic.

With an automatic sign test primitive, it is easy to see that addition, comparison and
equality could be implemented in an automatic matter. Furthermore, multiplication by
any power of 𝑢 can be realised by shifting all coefficients while multiplication with a fixed
integer can be implemented as repeated addition. Multiplying by any member in ℤ[𝑢] can
be implemented as a finite composition of such operations, which gives semiautomatic
multiplication.

In [Jai+17] the authors naturally generalised this observation to get semiautomatic
representations of (ℤ(

√
𝑛), ℤ, +, <, =; ⋅) for any square root

√
𝑛, the details of which we

omit. We do note that the generalisation heavily hinges on the fact that for any 𝑛 ∈ ℕ
that is not a perfect square, its associated Pell’s equation 𝑑2 − 𝑛𝑒2 = 1 has infinitely
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many solutions [Lag67].

3.2 Cube roots

Trying to generalise this observation for cube roots is not trivial, as we are still not aware
of any deeper understanding of the cubic rings ℤ[ 3√𝑛] in general. However we do have
some preliminary results.

Example 23. There is a semiautomatic ring (𝐴, +, =, <; ⋅) containing 3√7.
We choose

𝑢−1 = 2 − 3√7

and consider the semiautomatic ring (ℤ[𝑢], +, <, =; ⋅), then we have the relation 1 −
12𝑢−1 + 6𝑢−2 − 𝑢−3 = 0, where 12 dominates the sum of all other terms, allowing us to
use a representation similar to that for the Golden ratio case, with coefficients bounded
between −12 and 12.

Note that 𝑢−1 = 𝑢2 − 12𝑢 + 6 so we are still not representing extra elements.
When checking if 𝑎 + 𝑏 = 𝑐, we perform the sign test on 𝑎 + 𝑏 − 𝑐, so assume the

coefficients are between −36 and 36. This time, we perform the sign test using a sliding
window of size 3, as we use the relation 𝑢3 = 12𝑢2 − 6𝑢 + 1 to update our variables.

For a tail bound, we have
∑
𝑖≤1

𝑢𝑖 ≤ 1
10

.

Instead of using a flat bound 𝑘′, we terminate when one of the following conditions is
broken

• ∣𝑎𝑖+2∣ ≤ 16 ̂𝑐,

• ∣𝑎𝑖+1∣ ≤ 4 ̂𝑐, or

• |𝑎𝑖| ≤ ̂𝑐.

where ̂𝑐 = 360. The reader can verify that violating one of the conditions will conclusively
indicate that the number exceeds the tail sum in a specific direction, which allows us to
determine its sign.

14



4 Conclusion

Jain, Khoussainov, Stephan, Teng and Zou [Jai+17] studied semiautomatic structures.
In particular, they presented semiautomatic ordered rings where addition, subtraction,
order and equality are in fact automatic. They also investigated countable ordinals with
semiautomatic addition, ordering and equality. We have investigated natural extensions
to some of the problems, such as considering multiplicative ordinal structures, and
extending their results on quadratic rings to cubic rings.

It seems fully possible to extend the ideas for Example 23 into other cube roots. The
challenge here is that cubic rings ℤ[ 3√𝑛] is generally less well-understood, and significant
insights might require breakthroughs in number theory.

Also, it seems plausible for larger ordinals to admit semiautomatic addition, multiplic-
ation and equality, not just 𝜔𝜔 as in Theorem 19.
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