Semiautomatic Ordinal and Ring Structures

Qi Ji

NUS School of Computing

13th November 2019

Slides

https://m4th.b0ss.net/semi/semi.pdf

Background

Automata theory

Finite automata

- Processes input symbol by symbol with finite memory
- The finite memory indicates whether the word as seen so far satisfies the condition to be checked.

Check multiple of 3

Automatic relations

- Encode idea of process tuples in parallel
- ullet Add a padding symbol #
- $conv(010, 01236) = \binom{0}{0}\binom{1}{1}\binom{0}{2}\binom{\#}{3}\binom{\#}{6}$
- A function is automatic iff its graph (encoded this way) is automatic

Verifying addition

Primary school algorithm

- n correct and no carry
- c − carry
- i wrong

Correct addition

2 3 5 8

1 1 2

2 4 7 0

nnncn

Incorrect addition

3 3 3 3

2 2

1 5 5

iinnn

Automatic structures

A structure $(A,f_1,\ldots,f_n,R_1,\ldots,R_m)$ is automatic iff

- A is a regular set,
- f_1, \dots, f_n are automatic functions,
- R_1, \dots, R_m are automatic relations.

Example

 $(\mathbb{N},+)$ is automatic but $(\mathbb{N},+,\cdot)$ is not automatic.

Semiautomatic structures

$$(A,f_1,\ldots,f_n,R_1,\ldots,R_m;g_1,\ldots,g_p,S_1,\ldots,S_q)$$
 is semiautomatic iff

- A is a regular set,
- f_1,\ldots,f_n are automatic functions and R_1,\ldots,R_m are automatic relations,
- g_1,\ldots,g_n are semiautomatic functions and S_1,\ldots,S_m are semiautomatic relations,

where $f:A^n\to A$ is semiautomatic iff fixing n-1 inputs, the resultant $A\to A$ function is automatic.

Semiautomatic structures

Example

 $(\mathbb{N},+,<,=;\cdot)$ is not automatic.

For any constant n, implement multiplication by n as repeated addition.

Set theory

Ordinals

Equivalence classes of well-order, where a well-order (S,<) obeys trichotomy, transitivity and well-foundedness (every nonempty subset has a minimum).

Intuitively, measures how many times a discrete process is repeated (possibly transfinitely many). For example,

$$\begin{array}{l} 0,1,2,3,\ldots,\omega,\omega+1,\ldots,\omega+\omega=\omega\cdot 2,\\ \omega\cdot 2+1,\omega\cdot 2+2,\ldots,\omega\cdot 2+\omega=\omega\cdot 3,\ldots,\omega\cdot 4,\ldots,\\ \omega\cdot \omega=\omega^2,\ldots,\omega^3,\ldots,\omega^\omega,\ldots. \end{array}$$

One way to generalise sum and products to infinite structures.

Ordinals

Semiautomatic Ordinal Structures

Existing characterisation

Theorem (Delhommé)

For any ordinal α the structure $(\alpha, +, <)$ is automatic iff $\alpha < \omega^{\omega}$.

Proof Sketch

Consider $\alpha=\omega^n$, any $\beta\in\alpha$ is of the form

$$\omega^{n-1} \cdot c_{n-1} + \dots + \omega \cdot c_1 + c_0$$

for coefficients $c_0,\dots,c_{n-1}\in\mathbb{N}.$

We can define + on the n-ary convolution of an automatic copy of $(\mathbb{N},+,<)$.

Incorporating semiautomaticity

Observation. Using the same representation, when $\beta \in \alpha$ is fixed, we can define left and right-multiplication by β in an automatic manner. (Addition and multiplication on ordinals are not commutative)

Theorem

For any ordinal $\alpha<\omega^\omega$ the structure $(\alpha,+,<,=;\cdot)$ is semiautomatic.

Left multiplication

Let

$$\begin{split} \beta &= \omega^k \cdot b_k + \omega^{k-1} \cdot b_{k-1} + \dots + \omega \cdot b_1 + b_0 \\ \gamma &= \omega^l \cdot c_l + \omega^{l-1} \cdot c_{l-1} + \dots + \omega \cdot c_1 + c_0 \end{split}$$

expanding the giant expression, we get

$$\begin{split} \beta \cdot \gamma &= \beta \cdot \omega^l \cdot c_l + \beta \cdot \omega^{l-1} \cdot c_{l-1} + \dots + \beta \cdot \omega \cdot c_1 + \beta \cdot c_0 \\ \dots \\ &= \omega^{k+l} \cdot c_l + \omega^{k+l-1} \cdot c_{l-1} + \dots + \omega^{k+1} \cdot c_1 \\ &+ \left(\omega^k \cdot (b_k \cdot c_0) + \omega^{k-1} \cdot b_{k-1} + \dots + \omega^{b_1} + b_0\right) \cdot 1_{c_0 \neq 0} \end{split}$$

where $1_{c_0\neq 0}$ is 1 is $c_0\neq 0$ and 0 otherwise.

Right multiplication

Ordinal multiplication distributes on the right, so we get a finite composition of

- right-multiplication by ω ,
- right-multiplication by fixed constants,
- ordinal addition.

Right multiplication by ω

$$\begin{split} \left(\omega^3 \cdot b_3 + \omega^2 \cdot b_2 + \omega \cdot b_1 + b_0\right) \cdot \omega \\ &= \begin{cases} \omega^4 & \text{if } b_3 > 0 \\ \omega^3 & \text{if } b_3 = 0, b_2 > 0 \\ \omega^2 & \text{if } b_3 = 0, b_2 = 0, b_1 > 0 \\ \omega & \text{if } b_3 = 0, b_2 = 0, b_1 = 0, b_0 > 0 \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Semiautomatic ordinals at ω^ω and beyond

Overview

Theorems (Jain, Khoussainov, Stephan, Teng and Zou)

- Let α be any countable ordinal, the structure $(\omega^{\alpha};+,<,=)$ is semiautomatic.
- The semiring of polynomials over \mathbb{N} $(\mathbb{N}[x];+,\cdot,=)$ is semiautomatic.

Polynomials over N

- Fix an semiautomatic copy A of $(\mathbb{N},+,<;\cdot)$, add new "connectives" \oplus,\otimes
- ullet Represent polynomials as lists of coefficients from A
- Represent elements as polynomials with connectives between them
 - $1,10,2\oplus 0,4$ represents the expression $(2x^2+10x+1)\cdot (4x)$
- ullet Define the quotient map val sending an expression to the canonical representation.
- val is not automatic, but for any polynomial $p \in \mathbb{N}[x]$, there is an automatic fragment of val that is "good enough".

Polynomials over ω

- We need even more connectives $\oplus_l, \oplus_r, \otimes_l, \otimes_r$
- For arbitrarily large $k \in \mathbb{N}$, $k + \omega = \omega$ and $\omega \cdot k \cdot \omega = \omega \cdot \omega$
- Refine error conditions to deal with this

Conclusion

The structure $(\omega^{\omega}; +, <, \cdot, =)$ is semiautomatic.

Semiautomatic Ring Structures

Overview

Rings are obtained by adding to an Abelian group a notion of multiplication.

Theorem (Jain, Khoussainov, Stephan, Teng and Zou)

For any $n \in \mathbb{N}$ the ring $(\mathbb{Z}(\sqrt{n}), \mathbb{Z}, +, <, =; \cdot)$ is semiautomatic.

Illustrating square roots

We illustrate with the simplest case, let $u=\frac{1+\sqrt{5}}{2}$ denote the golden ratio.

Theorem (Jain, Khoussainov, Stephan, Teng and Zou)

 $(\mathbb{Z}[u], +, <, =; \cdot)$ is semiautomatic.

The ingredients

ullet $3=u^{-2}+u^2$ for any $x+yu\in\mathbb{Z}[u]$, so update coefficients until

$$x + yu = \sum_{i} a_i u^i$$

but now each $|a_i| \leq 2$.

• Tail bound – $\sum_{i\leq 2}u^i$ is a geometric series

Sign test

- To check if a + b = c we perform sign test on a + b c.
- Given a list of coefficients, we slide over them and use the equation $u^2=u+1$ to update our memory
- \bullet The first time any coefficient overshoot $4\cdot \sum_{i\leq 2} u^i$, by our earlier tail bound we will know the sign
- If all input is processed, do a finite case distinction
- Use the characterisation that automatic functions are also computable by linear-time one-tape Turing machines where input and output start at the same position (Case, Jain, Seah and Stephan) to look through coefficients in order.

Generalising to cube roots

The case of $\sqrt[3]{7}$

Let $u^{-1}=2-\sqrt[3]{7}$ and we use a similar strategy to show $(\mathbb{Z}[u],+,<,=;\cdot)$ is semiautomatic.

To achieve our coefficient bound we have

$$u^3 - 12u^2 + 6u - 1 = 0$$

where 12 dominates.

 The tail bound is also geometric, but since we update two coefficients at once in every step of the sign test, we need more refined bounds.

The case of $\sqrt[3]{7}$

- \bullet Denote our current coefficients a_i,a_{i+1},a_{i+2} and we terminate if any condition here is broken
 - $|a_{i+2}| \le 16k'$,
 - $\bullet \ |a_{i+1}| \leq 4k' \text{, or}$
 - $|a_i| \leq k'$, or

where k' = 360.

This gives us a semiautomatic ring containing $\sqrt[3]{7}$.

Conclusion

Contributions

- Incorporate notion of semiautomaticity into small ordinals (below ω^{ω}).
- Found semiautomatic rings containing cube roots, generalising existing result.

Future directions

On ordinals

Question

For how large α can we find semiautomatic representations of $(\alpha;+,<,\cdot,=)$?

Future directions

On semiautomatic rings

Question

For every algebraic number c is there a semiautomatic ring with order which contains c?

Question

Is there a semiautomatic ring with order that simultaneously contains $\sqrt{2},\sqrt{3}$ and $\frac{1}{2}?$

When these $\tilde{3}$ numbers are simultaneously present, the ring has enough information to encode the angle 15 degrees.