
CS3230 Homework 1

Qi Ji

26th October 2018

1 K-sorted Array

1.1

Statement 1.1.1. Fix 𝑗, suppose for any 𝑖 ∈ { 1, … , 𝑗 − 𝑘 − 1 }, 𝐵[𝑖] contains
the 𝑖-th smallest element of 𝐴. Then the value extracted from the heap will be
the (𝑗 − 𝑘)-th smallest element of 𝐴.

1.2

For any 𝑖 ∈ { 1, … , 𝑛 }, we let 𝑀(𝑖) denote the 𝑖-th smallest element of 𝐴.

Proof. We first observe that the elements

𝑋 ∶= { 𝐴[1], … , 𝐴[𝑘], … , 𝐴[max(𝑗, 𝑛)] }

have been added to the heap 𝑆 in previous (if any) and current iterations of the
for loop. Since 𝐴 is 𝑘-sorted, 𝑀(𝑗 − 𝑘) ∈ { 𝐴[1], … , 𝐴[max(𝑗 − 𝑘 + 𝑘, 𝑛)] } = 𝑋.
By our assumption that 𝐵[𝑖] contains the 𝑖-th smallest element of 𝐴 for each
𝑖 ∈ { 1, … , 𝑗 − 𝑘 − 1 }. We see that the elements

𝑌 ∶= { 𝑀(1), … , 𝑀(𝑗 − 𝑘 − 1) }

have already been extracted from 𝑆 in previous iterations. As 𝐴 contains distinct
integers, we see that 𝑀(𝑗−𝑘) ∉ 𝑌. Now we see that the heap 𝑆 contains precisely
𝑋 ∖ 𝑌. All elements less than 𝑀(𝑗 − 𝑘) are not in 𝑆, so 𝑀(𝑗 − 𝑘) is minimal in
𝑆, and it will be the extracted value.

1.3

Proof. Proceed by induction on 𝑗 − 𝑘. Applying Statement 1.1.1 with 𝑗 = 𝑘 + 1
proves the base case that 𝐵[1] will contain the smallest element of 𝐴. Similarly,
Statement 1.1.1 proves the inductive case. This means for every 𝑖 ∈ { 1, … , 𝑛 },
𝐵[𝑖] = 𝑀(𝑖) so in particular, 𝐵 contains the elements of 𝐴 in sorted order.

1

CS3230 Homework 1 26th October 2018

2 Inversions

2.1

Solution. Given the array ⟨2, 3, 8, 6, 1⟩. The inversions are (1, 5), (2, 5), (3, 4),
(3, 5), (4, 5). �

2.2

Solution. The array given by ⟨𝑛, 𝑛 − 1, … , 1⟩ has inversion count (𝑛
2). �

2.3

Algorithm 1: Counting inversions with modified mergesort.
Data: an array 𝐴[1, … , 𝑛] containing a permutation of the 𝑛 elements
Result: the number of inversions in 𝐴

1 inversions ← 0
2 subroutine modified-merge (left, mid, right) is

Data: indices of start of left subarray, start of right subarray and end
of right subarray, where both subarrays sorted

Result: two subarrays merged, inversions incremented
3 Initialise array 𝐵[left, … , right]
4 𝑖 ← left; 𝑗 ← mid
5 𝑘 ← left
6 while 𝑘 ≤ right do
7 if 𝑖 < mid ∧ (𝑗 > right ∨ 𝐴[𝑖] < 𝐴[𝑗]) then
8 𝐵[𝑘] ← 𝐴[𝑖]
9 𝑖 ← 𝑖 + 1

10 else
11 𝐵[𝑘] ← 𝐴[𝑗]
12 𝑗 ← 𝑗 + 1
13 inversions ← inversions + (mid − 𝑖)
14 𝑘 ← 𝑘 + 1
15 copy 𝐵[left, … , right] into 𝐴[left, … , right]
16 function mergesort (L, R) is

Data: start 𝐿 and end 𝑅 indices of subarray to mergesort
17 if 𝐿 = 𝑅 then
18 return
19 𝑀 ← ⌊ 𝐿+𝑅

2 ⌋ + 1
20 mergesort(𝐿, 𝑀 − 1)
21 mergesort(𝑀, 𝑅)
22 modified-merge(𝐿, 𝑀, 𝑅)
23 mergesort (1, n)
24 output inversions

Qi Ji 2

	K-sorted Array
	
	
	

	Inversions
	
	
	

