1 Counting

Useful formulas.

$$a + ar + ar^{2} + \dots + ar^{n} = \frac{a(r^{n+1} - 1)}{r - 1}$$

$$a + (a + d) + \dots + (a + nd) = \frac{(n + 1)(a + a + nd)}{2}$$

$${}^{n}P_{k} = \frac{n!}{(n - k)!}$$

$$\binom{n}{k} = {}^{n}C_{k} = \frac{n!}{k!(n - k)!}$$

$$(a + b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

2 Graphing

Definitions.

Tree. graph with no cycle, Leaf. vertex with degree 1.

Weight of graph. sum of weights of all its edges.

 ${\bf Spanning \ tree.}\ {\rm subgraph \ that \ is \ a \ tree \ and \ contains \ all \ vertices \ of \ original \ graph.}$

Theorems.

Degree Theorem.In any graph, sum of degrees $= 2 \times$ no. edges.

Leaf Lemma. Every tree with ≥ 2 vertices has ≥ 2 leaves (deg1 vertices).

Tree Theorem. Every tree with n vertices has exactly n - 1 edges.

Euler Walk Theorem I. A connected graph contains a closed Euler walk iff every vertex has an even degree.

<u>directed version</u>. iff for every vertex the no. arrows in = no. arrows out.

 ${\bf Euler}$ Walk Theorem II. A connected graph contains an open Euler walk iff

- (i) start/end vertices have odd degree; and
- (ii) all other vertices have even degree.

 $\underline{\text{directed version.}}$ iff

- (i) for start vertex, no. arrows out exactly one more than no. arrows in;
- (ii) for end vertex, no. arrows in exactly one more than no. arrows out;
- (iii) for all other vertices no. arrows in = no. arrows out.

Prim's Algorithm

- 1. Choose any vertex to initalise tree.
- 2. Grow the tree by one edge: of all edges that connect to vertices not yet in tree, find one with minimum-weight and add it in tree.
- 3. Repeat step 2 until tree spans.

Finding Euler circuit.

- 1. Check all vertices are even.
- 2. Construct any cycle.
- 3. If there's still remaining unused edges, construct cycle with those and combine the cycles.
- 4. Repeat step 3 until all edges used.

Chinese Postman Problem (Choosing edges to repeat)

- 1. Enumerate all pairings of odd vertices.
- 2. For each pair, find paths that join the vertices with minimum weight.
- 3. Use the set of pairings which sum of weights is minimised.
- 4. Walk the edges found above twice.

Vertex colouring If graph G contains a complete graph on n vertices, then $\chi(G) \ge n$.

Upper bound. Arrange degrees in decreasing order, place integers $1, 2, 3, \ldots$ below the degrees until you reach integer k such that $k + 1 > d_{k+1}$, then $\chi(G) \le k + 1$.

3 Clocking

Congruence properties If $a \equiv b \pmod{m}$, then I can

- add multiples of modulo m to any side
- multiply by integers
- exponentiate both sides with positive powers only
- two congruences with the same modulo can be added/multiplied with each other

Calendrical Knowledge

YYYY is a leap year iff

- it is not a century year and divisible by 4 (1996); or
- it is a century year and divisible by 400 (2000).

Calendar (mod 7)

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
31	28/29	31	30	31	30	31	31	30	31	30	31
3	0/1	3	2	3	2	3	3	2	3	2	3

4 Coding

bin	oct	hex	bin	hex
0	0	0	1000	8
1	1	1	1001	9
10	2	2	1010	A
11	3	3	1011	В
100	4	4	1100	C
101	5	5	1101	D
110	6	6	1110	E
111	7	7	1111	F

Binary representation	Divide by	2 and	write it	right-to-left
------------------------------	-----------	--------	----------	---------------

Module	o 37	enco	ding	and	ECC	C. 0-9	bec	omes	0-9	and	(spa	ce) is	36,	and
sym	Α	В	\mathbf{C}	D	Ε	\mathbf{F}	G	Η	Ι	J	Κ	L	Μ	
num	10	11	12	13	14	15	16	17	18	19	20	21	22	
sym	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Ζ	
num	23	24	25	26	27	28	29	30	31	32	33	34	35	

Weighted sum $w = 1(\text{last char}) + 2(\text{second last char}) + \cdots + n(\text{first char})$, and for modulo 37 encoding, append a checksum char such that $w \equiv 0 \pmod{37}$.

ISBN. 10 digits, X in last digit means 10, and a valid ISBN will have $w \equiv 0 \pmod{11}$.

Hamming (7,4) and (8,4) **Codes.** Every circle has even parity. In (8,4), s_8 keeps total parity even.

5 Cryptography

Affine Cryptosystems with modulo n, (a, b) is the encryption key

encrypt: $y \equiv ax + b \pmod{n}$

decrypt: $y \equiv a'x - a'b \pmod{n}$ where a' is a inverse modulo n.

Finding modulo Inverse. Use Euclid a = qd + r, gcd(a, d) = gcd(d, r).

Modular exponentiation. Finding $a^n \pmod{m}$. Express n as multiples(usually binary), then split a^n and find remainder for each term.

RSA. p, q are 2 primes, n = pq, k is an integer that has an inverse (mod (p - 1)(q - 1)).

- Let P be a chunk of plaintext such that $0 \le P < n$.
- j is inverse of k mod (p-1)(q-1), $kj \equiv 1 \pmod{(p-1)(q-1)}$
- Public key is (n, k). Private key is (j).
- Procedure encrypt: $C \equiv P^k \pmod{n}$.
- Procedure decrypt: $P \equiv C^j \pmod{n}$.

6 Chancing

Probability. With event *E* and sample space *S*, $\mathbb{P}(E) = \frac{|E|}{|S|}$.

Independence. characterising property: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ where A, B are events.

Conditional Probability. $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$

Binomial distribution. For n independent events each with probability p,

$$X \sim B(n,p) \iff \mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ and } \mathbb{E}[X] = np^{k}$$

Expectation. $\mathbb{E}[X] = \sum_{x} x \cdot \mathbb{P}(X = x)$ iterated through all possible values for x. Expectation is linear so suppose total winnings $X = X_1 + \cdots + X_k$, then

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_k].$$

Poisson Distribution For Binomial distribution with large N and moderate $\mathbb{E}[X] = c = Np$, then

$$\mathbb{P}(X=k) \approx \frac{e^{-c}c^k}{k!}$$

