GET1004 Tutorial 1

Qi Ji

7th September 2020

1

(a)

a b c d e f g h i j k l m n o p q r s t u v w x y z
e x t r a o d i n y b c f g h j k l m p q s u v w z

(b)

Twxal matqlnpw

(c)

Coec hv aevj

2

Eulfsraxetamr gjyrtwb

3

i. Frequency table

A F G H J K M N O P S U V X Y Z
1 2 5 2 4 4 1 4 1 3 1 1 4 4 2 4

3.1 ii.

By frequency analysis the remaining substitutions needed is

G K N J P Z F H U O A M
i t e o h s a c y g f u

to get

neitherofthoseisitsmaincryptographicpurpose

4

(a)

  1. \(1519 = 49\cdot 31 + 0\), \((q,r) = (49,0)\).

  2. \(11105 = 64\cdot 171 + 161\), \((q,r) = (64,161)\).

  3. \(-8747891 = -3770\cdot 2321 + 2279\), \((q,r) = (-3770,2279)\).

(b)

  1. trivial, \(31 = \gcd(1519, 31) = 31 + 0\)

  2. \(\gcd(11105, 171) = 1 = 17 \cdot 11105 - 1104 \cdot 171\)

  3. \(\gcd(-8747891, 2321) = 1 = (-1050) \cdot (-8747891) - 3957469 \cdot 2321\)

5

Let \(k,l\) be integers such that \(ak = b\) and \(bl = c\), then \(akl = c\), so \[ bx + cy^2 = akx + akly^2 = a(kx + kly^2) \] which shows the divisibility.

6

Let \(x,y\) be integers such that \[ abx + c^2y = 1. \] \(\gcd(a,c) = 1\) because \(a(bx) + c(cy) = 1\), similarly \(\gcd(b,c) = 1\) because \(b(ax) + c(cy) = 1\).