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Q 1. Let A be a finite set of size m where m > 1, and let a be an element of A. Prove that
one has |A\ {a}| +1=

Proof. A is finite, so {a} C A is also finite, by complement principle, |A\ {a}| + [{a}| = |A],
so |[A\{a}|+1=m. O

Q 2. Let S be a finite set and let f : S — S be a function. Prove that f is injective iff f is
surjective.

Proof. Suppose f : S — S is injective. For any subset X C S, let f(X) C S be the X-image

of f,
f(X)={yeS:qxeX. flx)=y}.

Clearly |f(S)] < |S| and |f(S)] is finite. Since f is injective, by injection principle, |S| <
|f(S)], so |f(S)] = |S|. By corollary of complement principle, f(S) = .S and f is surjective.
Conversely suppose f is surjective. For any subset Y C S| let f*(Y) C S denote the Y-
pre-image of f

ffY)={xeS: fx)eY}.
Clearly |f*(S)| < |S]|, and since f is surjective, for every y € S, f*({y}) is non-empty.

vy e s, | ({yh)l =1

Because f is well-defined, for any distinct pair of elements in S, the f-preimage of their
singletons are disjoint.

Vy,y2 € Sy A y2 = [T ) 0 ({n2}) =0

Because f is totally-defined, the union of f-preimages of every element in its range will cover
the domain S, so let |S| be n, and for i € {1,2,...,n}, let y; denote each element in S,

n

U ({wi}) =5

U {y}‘ Bl

S IF ()l = n

for each y;, f*({y;}) is non-empty
n< ) |If {yhl=n
i=1
this means that for each y; € S, |f*({y;})] = 1, therefore f is injective. O
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Q 3. Let m,n € N be so that n > m. Prove that there is no injective function f from
{1,...,n}to{1,...,m}. (Pigeonhole Principle)

Proof. First note that {1,...,n} = N_, and {1,...,m} = N_,, are finite,

n>m
{Lon} > {L...,m}]

Then by (contrapositive of) injection principle, there does not exist injective map f from
{L,....,n}to{1,....m}. Il

n=Ll.if g is odd
Q 4. Prove that the function f : N — Z defined by f(n) := { 2 BRIBOC o bijective.

=+ if nis even,

(N starts from 1 in this question.)

—2z; if 2 <0,
2z+1; if2>0.

@oﬁww:g(”gl):z(”;1>+1=m

and for any even n € N|

Proof. Define g :Z — N,z — {

For any odd n € N,

So go f = idy.
For any z € Z,z < 0, —2z > 0 and is even,

(fog)(z) = f(-22) = =z,

and when z > 0, 224+ 1 > 0 and is odd,

(22—1—1)—1:

(fog)(z)=f(2241) = :

zZ.

So fog=1idg. Since f is invertible, f is bijective. ]
Q 5. Let F be a finite set and let I be an infinite set. Prove that I\ F is infinite.

Proof. Without loss of generality, suppose F' C I, then [ = FU (I \ F). (Otherwise consider
the intersection of F' and I.) Suppose for a contradiction I \ F' is finite, since I \ F' and F'
are finite and disjoint, by addition principle,

[Fl+ I\ Fl=[FU(\F)

and F'U (I \ F) is also finite. But F U (I \ F)) = I, so id; is a bijective map from an infinite
set to a finite set, a contradiction. O]



Q 6. Let S be a set. Prove that S is countable iff there is an injective function f:S — N.
Proof. 1f S is countable, S < N <= exists injective function f : S — N. O]

Q 7. Let S be a non-empty set. Prove that S is countable iff there is a surjective map
f:N—=S.

Proof. 1t S is countable, S < N <= exists injective map g : S —+ N <= exists surjective
map f: N — S (consequence of Axiom of Choice, because S # (). O

Q 8. Prove that if 'y, ..., (), is countable, then C; x Cy x --- x C,, is countable.
Lemma 8.1. N x N2 N. (Another proof in Q11)

Proof. Consider this visual representation of N x N

0 (0,0) (0,1) (0,2) (0,3)
1 (1,00 (1,1) (1,2) (1,3)
2 (2,00 (2,1) (2,2) (2,3)
3 (3,00 (3,1) (3,2) (3,3)

Define a bijection f : N — N x N by diagonally tracing the diagram above, ie f(0) :=
(0,0), f(1) :=(0,1), f(2) := (1,0), £(3) :=(0,2), f(4) := (1,1), f(5) := (2,0),.... O

Lemma 8.2. Product of two countable sets is countable.

Proof. Suppose C4, Cy are countable sets, C; < N and C5 < N, so there exists injective maps
f:Cy — Nand g: Cy — N, then define h as

h201XCQ—>NXN,
(c1,c2) = (f(e1), g9(ca)).

Suppose c¢1,¢; € Cy and ¢, € Cy such that h(cy,co) = h(c),d,), then (f(c1),9(c2)) =
(f(c}), g(ch)) which means f(c;) = f(c}) and g(c2) = g(c,), and because f and g are injective,
¢ =y and ¢ = ¢}, so (c1,c2) = (¢, ) and h is injective. This means C; x Cy < N x N,
and because N x N 2 N (from Lemma 8.1), C; x Cy < N. O

Proposition. Product of finitely many countable sets is countable.

Proof. Product of 2 countable sets is countable. Now suppose the product of n countable
sets, 'y x Cy X --- x (), is countable, C} x Cy X --- x C, < N, and C,,,; is also countable.
Then by Lemma 8.2, (C; x Cy x --- x Cp,) X Cpy1 < N. Therefore by induction, for any
neN,n>2 C; x(Cyx---x (), is countable. L]



Q 9. Let X and Y be any two sets. Suppose | X| = |Y|. Show that |P(X)| = |P(Y)].

Proof. Suppose X and Y are any two sets where | X| = |Y'|, then there exists a bijective map
f: X =Y. For any C' C X, the f-image of C' is a subset of Y where

f(O):={yeY :3ceC. flc)=y}

and because f is bijective, f(C) is uniquely determined by C.
Similarly, for any D C Y, the f-preimage of D is a subset of X where

ff(D):={zeX:f(x)eD}

which is also uniquely determined by D because f is bijective.
We can define the bijective map ¢

b PX) = P(Y), Cs F(O).

For any C,C" € P(X), if C # (', then because f is bijective, f(C) # f(C"), so ¢ is
injective. For any D € P(Y), because f is surjective, f*(D) C X, so in particular, there
exists C' € P(X) where f(C) = D, so 1 is surjective.

Hence 9 is bijective, and as a result |P(X)| = |P(Y)| O

Definition. For any sets A and B, let Maps(A, B) denote the subset of A x B defined by

| e P(AxB): ¢ asarelation from A to B
Maps(4, B) := { is totally defined and well-defined

Q 10. Let X and Y be any two sets, and consider the set Maps(X,Y’) of all maps from X
to Y. Show that | Maps(X,Y)| < |P(X xY)].

Proof. Since by definition, Maps(X,Y) C P(X x Y), define the map
® : Maps(X,Y) - P(X xY)
pr=p
which is almost the identity map, and is clearly injective. So | Maps(X,Y)| < |[P(X xY)|. O

Q 11. Use the unique prime factorisation property of Z (fundamental theorem of arithmetic)
and the Schroder-Bernstein theorem to show that |N| = [N x NJ.

Proof. The map ¢ : N — N x N n — (12,n) is clearly an injective map from N to N x N, so
N < N x N. Now consider the map 1,

Y :NxN-—= N,
(a,b) 2% 3
For any a,b,c,d € N where ¥(a,b) = 1(c,d), 2°3° = 2¢3¢. Then by uniqueness of prime

factors, a = c and b = d, so (a,b) = (¢,d), and 9 is injective. Therefore N x N < N.
By Schroder-Bernstein theorem, |[N| = |N x NJ. O



Q 12. Show that
|P(N)| < [Maps(N, N)|.

Use this and the above results to deduce that

[P(N)| = | Maps(N, N)|.
Proof. For any S C N, define ¥,

U : P(N) — Maps(N, N),

S /\S,
where A\g : N — N,

1 ifnes,
H
0 otherwise.
For any two subsets of N, S, S5 € P(N), if S; # Sy, without loss of generality, Ju € S;. u & Ss.

Then U(S))(u) =1 # 0 = W(S2)(u). So in particular, U(S;) # ¥(S3). Hence V¥ is injective
and |P(N)| < |Maps(N, N)|.

From Q11, N=NxN
from QO9, P(N) =2 P(N x N)
from Q10, Maps(N,N) < P(N x N)
therefore Maps(N,N) 5 P(N)
Then because P(N) < Maps(N, N) and Maps(N, N) < P(N), by Schroder-Bernstein theorem,
P(N) = Maps(N, N). O



