
12th November 2017 T04

MA1100 Fundamental Concepts of Mathematics
AY2017/18 Sem 1

Homework 5
By: Qi Ji

A0167793L

Q 1. Let A be a finite set of size m where m > 1, and let a be an element of A. Prove that
one has |A \ {a}|+ 1 = m.

Proof. A is finite, so {a} ⊆ A is also finite, by complement principle, |A \ {a}|+ |{a}| = |A|,
so |A \ {a}|+ 1 = m.

Q 2. Let S be a finite set and let f : S → S be a function. Prove that f is injective iff f is
surjective.

Proof. Suppose f : S → S is injective. For any subset X ⊆ S, let f(X) ⊆ S be the X-image
of f ,

f(X) := { y ∈ S : ∃x ∈ X. f(x) = y } .

Clearly |f(S)| 6 |S| and |f(S)| is finite. Since f is injective, by injection principle, |S| 6
|f(S)|, so |f(S)| = |S|. By corollary of complement principle, f(S) = S and f is surjective.
Conversely suppose f is surjective. For any subset Y ⊆ S, let f ∗(Y ) ⊆ S denote the Y -
pre-image of f

f ∗(Y ) := {x ∈ S : f(x) ∈ Y } .

Clearly |f ∗(S)| 6 |S|, and since f is surjective, for every y ∈ S, f ∗({y}) is non-empty.

∀y ∈ S. |f ∗({y})| > 1

Because f is well-defined, for any distinct pair of elements in S, the f -preimage of their
singletons are disjoint.

∀y1, y2 ∈ S. y1 6= y2 =⇒ f ∗({y1}) ∩ f ∗({y2}) = ∅

Because f is totally-defined, the union of f -preimages of every element in its range will cover
the domain S, so let |S| be n, and for i ∈ { 1, 2, . . . , n }, let yi denote each element in S,

n⋃
i=1

f ∗({yi}) = S∣∣∣∣∣
n⋃

i=1

f ∗({y})

∣∣∣∣∣ = |S|

n∑
i=1

|f ∗({yi})| = n

for each yi, f ∗({yi}) is non-empty

1 · n 6
n∑

i=1

|f ∗({yi})| = n

this means that for each yi ∈ S, |f ∗({yi})| = 1, therefore f is injective.
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Q 3. Let m,n ∈ N be so that n > m. Prove that there is no injective function f from
{ 1, . . . , n } to { 1, . . . ,m }. (Pigeonhole Principle)

Proof. First note that { 1, . . . , n } ∼= N<n and { 1, . . . ,m } ∼= N<m are finite,

n > m

|{ 1, . . . , n }| > |{ 1, . . . ,m }|

Then by (contrapositive of) injection principle, there does not exist injective map f from
{ 1, . . . , n } to { 1, . . . ,m }.

Q 4. Prove that the function f : N → Z defined by f(n) :=

{
n−1
2
; if n is odd,

−n
2
; if n is even,

is bijective.

(N starts from 1 in this question.)

Proof. Define g : Z → N, z 7→

{
−2z; if z < 0,

2z + 1; if z > 0.

For any odd n ∈ N,

(g ◦ f)(n) = g

(
n− 1

2

)
= 2

(
n− 1

2

)
+ 1 = n,

and for any even n ∈ N,

(g ◦ f)(n) = g

(
−n
2

)
= −2

(
−n
2

)
= n.

So g ◦ f = idN.
For any z ∈ Z, z < 0, −2z > 0 and is even,

(f ◦ g)(z) = f(−2z) =
−(−2z)

2
= z,

and when z > 0, 2z + 1 > 0 and is odd,

(f ◦ g)(z) = f(2z + 1) =
(2z + 1)− 1

2
= z.

So f ◦ g = idZ. Since f is invertible, f is bijective.

Q 5. Let F be a finite set and let I be an infinite set. Prove that I \ F is infinite.

Proof. Without loss of generality, suppose F ⊆ I, then I = F ∪ (I \F ). (Otherwise consider
the intersection of F and I.) Suppose for a contradiction I \ F is finite, since I \ F and F
are finite and disjoint, by addition principle,

|F |+ |I \ F | = |F ∪ (I \ F )|

and F ∪ (I \ F ) is also finite. But F ∪ (I \ F ) = I, so idI is a bijective map from an infinite
set to a finite set, a contradiction.
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Q 6. Let S be a set. Prove that S is countable iff there is an injective function f : S → N.

Proof. If S is countable, S 4 N ⇐⇒ exists injective function f : S → N.

Q 7. Let S be a non-empty set. Prove that S is countable iff there is a surjective map
f : N → S.

Proof. If S is countable, S 4 N ⇐⇒ exists injective map g : S → N ⇐⇒ exists surjective
map f : N → S (consequence of Axiom of Choice, because S 6= ∅).

Q 8. Prove that if C1, . . . , Cn is countable, then C1 × C2 × · · · × Cn is countable.

Lemma 8.1. N× N ∼= N. (Another proof in Q11)

Proof. Consider this visual representation of N× N

N 0 1 2 3 . . .
0 (0, 0) (0, 1) (0, 2) (0, 3) . . .
1 (1, 0) (1, 1) (1, 2) (1, 3) . . .
2 (2, 0) (2, 1) (2, 2) (2, 3) . . .
3 (3, 0) (3, 1) (3, 2) (3, 3) . . .
... ... ... ... ... . . .

Define a bijection f : N → N × N by diagonally tracing the diagram above, ie f(0) :=
(0, 0), f(1) := (0, 1), f(2) := (1, 0), f(3) := (0, 2), f(4) := (1, 1), f(5) := (2, 0), . . . .

Lemma 8.2. Product of two countable sets is countable.

Proof. Suppose C1, C2 are countable sets, C1 4 N and C2 4 N, so there exists injective maps
f : C1 → N and g : C2 → N, then define h as

h : C1 × C2 → N× N,
(c1, c2) 7→ (f(c1), g(c2)).

Suppose c1, c
′
1 ∈ C1 and c2, c

′
2 ∈ C2 such that h(c1, c2) = h(c′1, c

′
2), then (f(c1), g(c2)) =

(f(c′1), g(c
′
2)) which means f(c1) = f(c′1) and g(c2) = g(c′2), and because f and g are injective,

c1 = c′1 and c2 = c′2, so (c1, c2) = (c′1, c
′
2) and h is injective. This means C1 × C2 4 N × N,

and because N× N ∼= N (from Lemma 8.1), C1 × C2 4 N.

Proposition. Product of finitely many countable sets is countable.

Proof. Product of 2 countable sets is countable. Now suppose the product of n countable
sets, C1 × C2 × · · · × Cn, is countable, C1 × C2 × · · · × Cn 4 N, and Cn+1 is also countable.
Then by Lemma 8.2, (C1 × C2 × · · · × Cn) × Cn+1 4 N. Therefore by induction, for any
n ∈ N, n > 2, C1 × C2 × · · · × Cn is countable.
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Q 9. Let X and Y be any two sets. Suppose |X| = |Y |. Show that |P(X)| = |P(Y )|.

Proof. Suppose X and Y are any two sets where |X| = |Y |, then there exists a bijective map
f : X → Y . For any C ⊆ X, the f -image of C is a subset of Y where

f(C) := { y ∈ Y : ∃c ∈ C. f(c) = y }

and because f is bijective, f(C) is uniquely determined by C.
Similarly, for any D ⊆ Y , the f -preimage of D is a subset of X where

f ∗(D) := {x ∈ X : f(x) ∈ D }

which is also uniquely determined by D because f is bijective.
We can define the bijective map ψ

ψ : P(X) → P(Y ), C 7→ f(C).

For any C,C ′ ∈ P(X), if C 6= C ′, then because f is bijective, f(C) 6= f(C ′), so ψ is
injective. For any D ∈ P(Y ), because f is surjective, f ∗(D) ⊆ X, so in particular, there
exists C ∈ P(X) where f(C) = D, so ψ is surjective.
Hence ψ is bijective, and as a result |P(X)| = |P(Y )|

Definition. For any sets A and B, let Maps(A,B) denote the subset of A×B defined by

Maps(A,B) :=

{
ϕ ∈ P(A×B) : ϕ as a relation from A to B

is totally defined and well-defined

}
Q 10. Let X and Y be any two sets, and consider the set Maps(X,Y ) of all maps from X
to Y . Show that |Maps(X,Y )| 6 |P(X × Y )|.

Proof. Since by definition, Maps(X,Y ) ⊆ P(X × Y ), define the map

Φ : Maps(X,Y ) → P(X × Y )

ϕ 7→ ϕ

which is almost the identity map, and is clearly injective. So |Maps(X,Y )| 6 |P(X×Y )|.

Q 11. Use the unique prime factorisation property of Z (fundamental theorem of arithmetic)
and the Schröder-Bernstein theorem to show that |N| = |N× N|.

Proof. The map ϕ : N → N×N, n 7→ (12, n) is clearly an injective map from N to N×N, so
N 4 N× N. Now consider the map ψ,

ψ : N× N → N,
(a, b) 7→ 2a · 3b

For any a, b, c, d ∈ N where ψ(a, b) = ψ(c, d), 2a3b = 2c3d. Then by uniqueness of prime
factors, a = c and b = d, so (a, b) = (c, d), and ψ is injective. Therefore N× N 4 N.
By Schröder-Bernstein theorem, |N| = |N× N|.
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Q 12. Show that
|P(N)| 6 |Maps(N,N)|.

Use this and the above results to deduce that

|P(N)| = |Maps(N,N)|.

Proof. For any S ⊆ N, define Ψ,

Ψ : P(N) → Maps(N,N),
S 7→ λS,

where λS : N → N,

n 7→

{
1 if n ∈ S,

0 otherwise.

For any two subsets of N, S1, S2 ∈ P(N), if S1 6= S2, without loss of generality, ∃u ∈ S1. u 6∈ S2.
Then Ψ(S1)(u) = 1 6= 0 = Ψ(S2)(u). So in particular, Ψ(S1) 6= Ψ(S2). Hence Ψ is injective
and |P(N)| 6 |Maps(N,N)|.

From Q11, N ∼= N× N
from Q9, P(N) ∼= P(N× N)

from Q10, Maps(N,N) 4 P(N× N)
therefore Maps(N,N) 4 P(N)

Then because P(N) 4 Maps(N,N) and Maps(N,N) 4 P(N), by Schröder-Bernstein theorem,
P(N) ∼= Maps(N,N).
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