Theorem 15.1 (Well-ordering principle). Every non-empty subset A of \mathbb{N} has a smallest element. $\forall A \in \mathcal{P}(\mathbb{N}). A \neq \emptyset \implies A \text{ has a smallest element}$ where "has a smallest element" means $\exists a_0 \in A. \ \forall a \in A. a_0 \leq a.$

Proof. Theorem 3.5.1 in textbook. (induction)

16 Divisibility

Definition 16.1. For any $a, d \in \mathbb{N}$, write $d \mid a$ (d (is a factor of divides) a, a (is divisible by a multiple of d) iff $\exists k \in \mathbb{N}$. $d \cdot k = a$.

Examples. $\forall a, d \in \mathbb{N}$

- $a \mid a$ is true (because $a \cdot 1 = a$)
- $1 \mid a \text{ is true (because } 1 \cdot a = a)$
- $d \mid 0$ is true (because $d \cdot 0 = 0$)
- $0 \mid a \implies a = 0$ (because only $0 \cdot 0 = 0$)

Lemma 16.2 (Divisibility implies ordering in \mathbb{N}). For any $a, d \in \mathbb{N}$, with $a \neq 0$. If $d \mid a$, then $d \leq a$.

Proof.

- 1. Suppose $d \mid a \implies \exists k \in \mathbb{N}. \ d \cdot k = a$
- 2. Since $a \neq 0$ by hopothesis, $d \neq 0, k \neq 0$. So $k \in \mathbb{N} \setminus \{0\} = S(\mathbb{N})$
- 3. so $\exists l \in \mathbb{N}$. k = S(l)
- 4. $a = d \cdot k = d \cdot (l+1) = d \cdot l + d$
- 5. Since $d + d \cdot l = a$ and $d \cdot l \in \mathbb{N}, d \leq a$.

Example. $\forall d \in \mathbb{N}. d \mid 1 \implies d = 1.$

Proof. $d \mid 1$, then by (division implies ordering) lemma, $d \leq 1$, so $d = 0 \lor d = 1$, but $0 \nmid 1$, so d = 1.

Properties. Divisibility is reflexive, anti-symmetric and transitive. $\forall a, b, c \in \mathbb{N}$,

- 1. $\exists 1 \in \mathbb{N}. a \cdot 1 = a \implies a \mid a$
- 2. $a \mid b \land b \mid a \implies a \leq b \land b \leq a \implies a = b$ (by above lemma and anti-symmetry of ordering)
- 3. $a \mid b \land b \mid c \implies \exists l, m \in \mathbb{N}. \ a \cdot l = b, b \cdot m = c \implies a \cdot l \cdot m = c \implies a \mid c$

17 More Division

Theorem 17.1 (Division Algorithm). Let $a, d \in \mathbb{N}$ with d > 0. Then there exists $q \in \mathbb{N}$ and $r \in \{0, \ldots, d-1\}$ such that a = qd + r in \mathbb{N} . Moreover, $q \in \mathbb{N}$ and $r \in \{0, \ldots, d-1\}$ are uniquely determined by $a, d \in \mathbb{N}$.

Theorem (Uniqueness of q, r). Given $a, d \in \mathbb{N}, d > 0$, if $q, q' \in \mathbb{N}, r, r' \in \{0, \dots, d-1\}$ such that

$$a = qd + r = q'd + r' \tag{17.1.1}$$

then q = q', r = r'. (uniqueness)

Proof.

- 1. Suppose for a contradiction that $r \neq r'$. By comparibility of natural numbers, either r > r' or r' > r.
- 2. Without loss of generality, assume r > r', then

$$\exists s \in \mathbb{N}, s \neq 0. r = r' + s$$

3. Then by (17.1.1), qd + r' + s = q'd + r', then by cancellation law for addition,

$$qd + s = q'd \tag{17.1.2}$$

4. Because $s \in \mathbb{N}, s \neq 0, q'd > qd$, then by cancellation law for multiplication, q' > q, so

$$\exists t \in \mathbb{N}, t \neq 0. \ q' = q + t$$

5. By (17.1.2),

$$\begin{array}{l} qd+s = (q+t) \cdot d \\ qd+s = qd+td \\ s = td \\ d \mid s \\ d \leq s \end{array} \qquad (and \ d>0) \\ (dvision \ implies \ ordering) \end{array}$$

- 6. which shows $d \leq s \leq r \implies d \leq r$, a contradiction with requirement that $r \in \{0, \ldots, d-1\}$.
- 7. Hence r = r', then by (17.1.1), a = qd + r = q'd + r.

8.
$$qd = q'd \implies q = q'$$
. (by cancellation law of $+, \times$)

9. r = r' and q = q', uniqueness of r, q shown.

Theorem (Existence of q, r). Given $a, d \in \mathbb{N}, d > 0, \exists q, r \in \mathbb{N}$ with r < d such that a = qd+r. Proof.

1. Consider the following subset of \mathbb{N} :

$$S := \{ n \in \mathbb{N} : \exists q \in \mathbb{N}. a = qd + n \}$$

[(S consists of all natural numbers of form $a - q \cdot d$ for various choices of q)]

2. Then $a = 0 \cdot d + a$, shows $a \in S$, in particular $S \neq \emptyset$, then by well-ordering principle,

$$\exists r \in S. \ \forall n \in S. \ r \leq n$$

3. This means $\exists q \in \mathbb{N}$. a = qd + r.

Claim. r < d

- Suppose for contradiction $r \ge d$, $\exists k \in \mathbb{N}$. d + k = r (k = r d)
- Then $a = qd + d + k = (q+1) \cdot d + k$
- This shows that $k \in S$, then by fact that $r \in S$ is smallest, we must have $r \leq k$.
- But $d + k = r \implies k \le r$, so r = k (by anti-symmetry of ordering)
- then we have d + r = r, cancelling +, d = 0, a contradiction with d > 0.
- 4. So given any number a and factor d, there exists quotient q and remainder r < d such that a = qd + r

Corollary 17.2. Let $n \in \mathbb{N}$. Then $\neg(n \text{ is even}) \iff (\exists l \in \mathbb{N}, n = 2l + 1)$

Proof.

1. Apply division algorithm to n with d = 2,

$$\exists q \in \mathbb{N}, r \in \{0, 1\}$$
. $n = 2q + r$

and q, r above are uniquely defined by n. Either r = 0 exclusive or r = 1.

- 2. Case r = 0, then n = 2q is even
- 3. If n is odd, then $\exists l \in \mathbb{N}$. n = 2l + 1, then

$$2q + 0 = n = 2l + 1$$

with $q, l \in \mathbb{N}$ and $0, 1 \in \{0, 1\}$ a contradiction with uniqueness of remainder

- 4. Case r = 1, then n = 2q + 1 is odd
- 5. if n is even, then $\exists k \in \mathbb{N}$. n = 2k, again

$$2k + 0 = n = 2q + 1$$

a contradiction with uniqueness of remainder.

3

(by definition)

Prime numbers and factorisation

Definition 17.3. A prime number is a natural number, $p \in \mathbb{N}$ such that

- p > 1 (ie. $p \neq 0 \land p \neq 1$)
- $\forall d \in \mathbb{N}. \ d \mid p. \ d = 1 \lor d = p.$

equivalently: $\forall r, s \in \mathbb{N}$. $p = r \cdot s$, one has $r = 1 \lor s = 1$.

Definition 17.4. A composite number is a natural number $n \in \mathbb{N}$ such that

- n > 1 (ie. $n \neq 0 \land n \neq 1$)
- *n* is not prime

equivalently: $\exists d \in \mathbb{N}$. $d \mid n \land d \neq 1 \land d \neq n$

Theorem 17.5 (Existence of prime factors). Let $a \in \mathbb{N}$ with a > 1. Then $\exists p. p \mid a$ where p is a prime number.

Proof.

1. Consider the subset

$$S := \{ d \in \mathbb{N} : d > 1 \land d \mid a \}$$

ie. S is set of all divisors of a which are > 1.

2. Then since a > 1 by given hypothesis, and $a \mid a$, we get $a \in S, S \neq \emptyset$. then by well-ordering principle

$$\exists p \in S. \ \forall d \in S. \ p \leq d$$

3. so we know $p \in \mathbb{N}, p > 1, p \mid a$.

Claim. p is prime.

- If not, $\exists r, s \in \mathbb{N}$. $(p = r \cdot s) \land (r \neq 1) \land (s \neq 1)$. (define of composite numbers)
- Then because $s \mid p$ and $p \mid a, s \mid a$.
- because $p \in S \implies p > 1 \implies p \neq 0$, so $s \neq 0$, then s > 1, hence $s \in S$.

$$\begin{split} s &= 1 \cdot s < 2 \cdot s \\ & 2 \leq r \\ s < 2 \cdot s \leq r \cdot s = p \\ & s < p \end{split}$$

- because $2 \leq r$ and $1 < s \implies s \neq 0$.
- s < p contradicts with p being smallest in S.
- 4. So every natural number $a \in \mathbb{N}$ has prime factor(s) $p \in \mathbb{N}$ where $p \mid a$.

Theorem 17.6 (Fundamental Theorem of Arithmatic or Unique Prime Factorisation property of \mathbb{N}). For any natural number $a \in \mathbb{N}$ with a > 1, there exists a (finitely many) sequence of prime numbers p_1, \ldots, p_r such that $a = \prod_{i=1}^r p_i$. Moreover, the primes p_1, \ldots, p_r are unique up to reordering. ie if q_1, \ldots, q_s is another sequence of primes such that $a = \prod_{i=1}^r q_i$, then r = s (same number) and q_1, \ldots, q_r , up to re-ordering, matches p_1, \ldots, p_r .

Existence.

Proof.

- 1. Given $a \in \mathbb{N}$, a > 1, show: \exists primes p_1, \ldots, p_r such that $a = \prod_{i=1}^r p_i$.
- 2. For $a \in \mathbb{N}$, a > 1, let

$$Q(a) := \exists \text{ primes } p_1, \dots, p_r. \ a = \prod_{i=1}^r p_i$$

- 3. <u>Base case</u>: Q(2) is true because 2 is prime, so a = 2, can take $r = 1, p_1 = 2$.
- 4. Induction step: Assume a > 1 and $Q(2), \ldots, Q(a)$ true. then Q(a+1) true because
- 5. a + 1 is either prime xor not prime
- 6. Case a + 1 is prime, then Q(a + 1) is true (take $r = 1, p_1 = a + 1$)
- 7. Case a + 1 is not prime, then a + 1 > 1,

$$\exists r, s \in \mathbb{N}. a + 1 = r \cdot s, r \neq 1, s \neq 1.$$

(clear that $r \neq 0, s \neq 0$ either)

- 8. $r \mid (a+1) \implies r \le a+1 \text{ and } s \ne 1 \implies r < a+1 \implies r \le a$
- 9. Symmetrically, $s \leq a$.
- 10. Then $r, s \in \{2, 3, ..., a\}$, so Q(r), Q(s) are true by induction hypothesis.
- 11. Hence \exists primes p_1, \ldots, p_l . $r = \prod_{i=1}^l p_i$. and \exists primes p_{l+1}, \ldots, p_{l+m} . $s = \prod_{i=l+1}^{l+m} p_i$.
- 12. Then $a + 1 = r \cdot s = \prod_{i=1}^{l} p_i \cdot \prod_{i=l+1}^{l+m} p_i$ is a product of primes.
- 13. by strong induction, Q(a) true for all $a \ge 2$.

Uniqueness. (ad-hoc proof using wop, not (easily) generalisable to other context.) *Proof.*

1. Suppose on contary that uniqueness of factorisation fails, consider the set

$$S := \{ a \in \mathbb{N} : a > 1, a \text{ has non-unique prime factors} \}$$

ie. assuming $S \neq \emptyset$.

- 2. By well-ordering principle, S has smallest element $a \in S$
- 3. So $a \in \mathbb{N}, a > 1, \exists$ primes $p_1, \ldots, p_r, q_1, \ldots, q_s$ such that $a = \prod_{i=1}^r p_i = \prod_{i=1}^s q_i$ and p_1, \ldots, p_r and q_1, \ldots, q_s are distinct even allowing permutation.

Claim. None of p's appear among the q's.

$$\forall i \in \{1, \dots, r\} . \forall j \in \{1, \dots, s\} . p_i \neq q_j$$

i. Suppose $\exists i \in \{1, \ldots, r\}$. $\exists j \in \{1, \ldots, s\}$. $p_i = q_j$, then

$$p_1 \cdots p_{i-1} \cdot p_{i+1} \cdots p_r = \frac{a}{p_i} = \frac{a}{q_j} = q_1 \cdots q_{j-1} \cdot q_{j+1} \cdots q_r$$

- ii. Take a' as above expression, we have a' < a, and having non-unique prime factors, so $a' \in S$, a contradiction with smallest $a \in S$.
- 4. Without loss of generality, assume $p_1 < q_1$, so $\exists t \in \mathbb{N}$. $t \neq 0, p_1 + t = q_1$.
- 5. consider $b := t \cdot q_2 \cdots q_s$, t nonzero, so $b \ge 1$.
- 6. Also, $a = q_1 \cdot q_2 \cdots q_s$, so b < a, so $b \notin S$, is b has the unique prime factorisation property
- 7. If t = 1, then $b = q_2 \cdots q_s$ must be <u>the</u> unique prime factorisation of b. Then by above claim, p_1 does not appear among q_2, \ldots, q_s . Yet,

$$b = (q_1 - p_1) \cdot q_2 \cdots q_s$$

= $q_1 q_2 \cdots q_s - p_1 q_2 \cdots q_s$
= $p_1 p_2 \cdots p_r - p_1 q_2 \cdots q_s$
= $p_1 (p_2 \cdots p_r - q_2 \cdots q_s)$

- 8. So $p_1 \mid b$, which should appear in the prime factorisation of b, a contradiction, so $t \neq 1$.
- 9. So $t = q_1 p_1 > 1$. Now $q_1 p_1 \le b \le a$, so $q_1 p_1 \notin S$. So $q_1 p_1$ has unique prime factorasation, say

$$q_1 - p_1 = l_1 \cdots l_u$$

where l_1, \ldots, l_u are primes.

- 10. By examination of $b = (q_1 p_q) \cdot q_2 \cdots q_s = p_1(p_2 \cdots p_r q_2 \cdots q_s)$, p_1 must appear in prime factor of b.
- 11. But $b = l_1 \cdots l_u \cdot q_1 \cdots q_s$ is also a prime factorisation of b, but
- 12. I give up, this is useless.