Theorem 15.1 (Well-ordering principle). Every non-empty subset A of N has a smallest
element.
VA e P(N). A#() = A has a smallest element

where “has a smallest element” means Jag € A. Va € A. ag < a.

Proof. Theorem 3.5.1 in textbook. (induction)

16 Divisibility
Definition 16.1. For any a,d € N, write d | a (d (is a factor of|divides) a, a (is divisible
by|a multiple of) d) iff 3k € N. d - k = a.
Examples. Va,d € N
e a|aistrue (because a- 1= a)
e 1|ais true (because 1-a = a)
e d|0is true (because d-0 = 0)
e 0|a = a=0 (because only 0-0 = 0)

Lemma 16.2 (Divisibility implies ordering in N). For any a,d € N, with a # 0. If d | a,
then d < a.

Proof.
1. Supposed |a = FkeN. d-k=a
2. Since a # 0 by hopothesis, d # 0,k #0. So k € N\ {0} = S(N)
3.s03dleN k=S5()
4 a=d-k=d-(I+1)=d-1+d
5. Sinced+d-l=aand d-l €N, d<a. O]

Example. Vi e N. d|1 = d=1.

Proof. d | 1, then by (division implies ordering) lemma, d < 1,s0d =0V d =1, but 011, so
d=1. O

Properties. Divisibility is reflexive, anti-symmetric and transitive. Va, b, ¢ € N,
1.31eN.a-1=a = ala

2.a|lbAbla = a<bAb<a = a =10 (by above lemma and anti-symmetry of
ordering)

3.albAb|lc = J,meN a-l=bb-m=c = a-l-m=c = alc



17 More Division

Theorem 17.1 (Division Algorithm). Let a,d € N with d > 0. Then there exists ¢ € N and
re{0,...,d—1} such that a = gd + r in N. Moreover, ¢ € N andr € {0,...,d—1} are
uniquely determined by a,d € N.

Theorem (Uniqueness of ¢, 7). Given a,d € N;d >0, ifq,¢' € Nyr,r" € {0,...,d—1} such
that
a=qd+r=qd+r (17.1.1)

then ¢ = ¢',7 = r’. (uniqueness)
Proof.

1. Suppose for a contradiction that r # /. By comparibility of natural numbers, either
r>rorr >r.

2. Without loss of generality, assume r > 7/, then
dseN,s£0.r=1r"+s
3. Then by (17.1.1), gd + 1" 4+ s = ¢'d 4+ ', then by cancellation law for addition,
qd+ s =dd (17.1.2)
4. Because s € N, s # 0, ¢'d > qd, then by cancellation law for multiplication, ¢’ > ¢, so
dHeNt#£0.¢d=q+t

5. By (17.1.2),

gd+s=(q+1t)-d
qd+ s =qd+td

s =td (cancellation property of addition)
d|s (and d > 0)
d<s (division implies ordering)

6. which shows d < s < r = d < r, a contradiction with requirement that r &€
{0,...,d—1}.

7. Hence r =1/, then by (17.1.1), a = qd +r = ¢'d+r.
8. qd=q¢d = q=¢. (by cancellation law of +, X)

9. r =1" and ¢ = ¢/, uniqueness of r, ¢ shown. O]



Theorem (Existence of q,r). Givena,d € N,d > 0,3q,r € N withr < d such that a = qd+r.
Proof.
1. Consider the following subset of N:

S:={neN:JgeN.a=qgd+n}

[(S consists of all natural numbers of form a — ¢ - d for various choices of ¢)]
2. Then a = 0-d+ a, shows a € S, in particular S # (), then by well-ordering principle,

dreS.VneS. r<n

3. This means 3¢ € N. a = qd + .
Claim. r < d

e Suppose for contradiction r > d, 3Gk e N.d+ k =r (k=r—d)
e Thena=qgd+d+k=(q+1)-d+k

o This shows that k € S, then by fact that » € S is smallest, we must have r < k.
e Butd+k=r = k<r,sor==k (by anti-symmetry of ordering)

e then we have d 4+ r = r, cancelling +, d = 0, a contradiction with d > 0.

4. So given any number a and factor d, there exists quotient ¢ and remainder r < d such
that a = qd +r ]

Corollary 17.2. Let n € N. Then —(n is even) <= (Il € N.n=2[+1)
Proof.
1. Apply division algorithm to n with d = 2,
JgeN,ref{0,1}.n=2q+r
and ¢,r above are uniquely defined by n. Either » = 0 exclusive or r = 1.
2. Case r =0, then n = 2¢ is even (by definition)
3. If n is odd, then 3l € N. n = 2] + 1, then
2¢+0=n=2l+1
with ¢,/ € Nand 0,1 € {0,1} a contradiction with uniqueness of remainder
4. Caser =1, then n =2¢ + 1 is odd
5. if n is even, then Jdk € N. n = 2k, again
2k+0=n=2q+1

a contradiction with uniqueness of remainder. O]



Prime numbers and factorisation
Definition 17.3. A prime number is a natural number, p € N such that
e p>1(ie. p£O0ADPF#1)

e VdeN.d|p.d=1Vvd=np.

equivalently: Vr,s €e N.p=r-s,onehasr=1Vs=1.

Definition 17.4. A composite number is a natural number n € N such that

en>1(e.n#0An#1)
e 1 is not prime
equivalently: 3d e N.d [ nAd#1ANd#n

Theorem 17.5 (Existence of prime factors). Let a € N with a > 1. Then 3p. p | a where p
is a prime number.

Proof.

1. Consider the subset
S:={deN:d>1Ad]|a}

ie. S is set of all divisors of ¢ which are > 1.

2. Then since a > 1 by given hypothesis, and a | a, we get a € S, S # (. then by
well-ordering principle
dpesS. Vde S p<d

3. so we know p e N;p > 1,p| a.
Claim. p is prime.
o Ifnot,Ir,seN. (p=r-s)A(r£1)A(s#1). (defn of composite numbers)

o Then because s | pand p | a, s | a.

e becausepe S = p>1 = p#0,s0s#0, then s > 1, hence s € S.

s=1-s<2-s
2<r

§s<2-s<r-s=p
s<p

e because 2 <rand1<s = s#0.

e s < p contradicts with p being smallest in S.

4. So every natural number a € N has prime factor(s) p € N where p | a. O



Theorem 17.6 (Fundamental Theorem of Arithmatic or Unique Prime Factorisation prop-
erty of N).
For any natural number a € N with a > 1, there exists a (finitely many) sequence of prime

numbers py, ..., p, such that a = [] pi.

Moreover, the primes pi,...,p, ci;"é unique up to reordering. ie if qi,...,qs 1S another se-
quence of primes such that a = 'r ¢, then r = s (same number) and q.,...,q., up to
re-ordering, matches py,...,p,. -

Existence.

Proof.

1. Given a € N, a > 1, show: 3 primes py, ..., p, such that a = [] p;.
i=1

2. Fora e N, a>1,let
Q(a) := 3 primes py,...,p,. a = Hpi
i=1

3. Base case: (2) is true because 2 is prime, so a = 2, can take r = 1,p; = 2.

4. Induction step: Assume a > 1 and Q(2),...,Q(a) true. then Q(a + 1) true because

5. a+ 1 is either prime xor not prime
6. Case a + 1 is prime, then Q(a + 1) is true (take r = 1,p; = a + 1)
7. Case a + 1 is not prime, then a +1 > 1,
droseNa+1l=r-s,r#1,s#1.
(clear that r # 0, s # 0 either)
8. rl(a+l) = r<a+lands#1 = r<a+1 = r<a
9. Symmetrically, s < a.

10. Then r,s € {2,3,...,a}, so Q(r),Q(s) are true by induction hypothesis.

!
11. Hence 3 primes py,...,p. =[] pi-
=1
. ’ l+m
and 3 primes pii1, ..., Pem- S= [ pi-
i=l+1

l l+m
12. Thena+1=7r-s=[]p;- [] p:is a product of primes.
=1 i=lt1

13. by strong induction, Q(a) true for all a > 2. ]



Uniqueness. (ad-hoc proof using wop, not (easily) generalisable to other context.)

Proof.

1.

10.

11.

12

Suppose on contary that uniqueness of factorisation fails, consider the set
:={a € N:a>1,a has non-unique prime factors }
ie. assuming S # 0.

By well-ordering principle, S has smallest element a € S

T S
Soa € N;a > 1,3 primes py,...,pr q1,---,qs such thata = [[ p; = [[ ¢ and py, ..., p»
i=1 i=1
and qi,...,qs are distinct even allowing permutation.

Claim. None of p’s appear among the ¢’s.

Vie{l,....,r}.Vje{l,....;s}.pi#gq
i. Suppose Jie {1,...,7}.3je{1,...,s}. p; =g, then
a a
Pro i Dict Digr D= — = — = Qo1 GGy
pi g

ii. Take a’ as above expression, we have a’ < a, and having non-unique prime factors,
so a’ € S, a contradiction with smallest a € S.

. Without loss of generality, assume p; < ¢;, so It € N. t £ 0,p; +t = q.

consider b :=1-¢qy---qs, t nonzero, so b > 1.
Also, a = q1 - q2---qs, so b < a, so b € S, ie b has the unique prime factorisation
property

Ift=1, then b = ¢y ---qs must be the unique prime factorisation of b. Then by above
claim, p; does not appear among g, ..., qs. Yet,

b=(q1—p1) q2qs
=q192 " 4s —P192 " - " Qs
=PiP2-Pr —P192" " 4s
=pi(P2-pr— a2 qs)

So py | b, which should appear in the prime factorisation of b, a contradiction, so t # 1.

Sot=q—p1>1. Nowq —p1 <b<a,soq —p €5S. So q. — p; has unique prime
factorasation, say
q—pr=lil

where [y, ...,[, are primes.

By examination of b = (¢1 —pg) - q2---¢s = p1(P2---Pr — g2+ ¢5), p1 Must appear in
prime factor of b.

Butb=1;---1,-q1---qs is also a prime factorisation of b, but

I give up, this is useless. O



