
Theorem 15.1 (Well-ordering principle). Every non-empty subset A of N has a smallest
element.
∀A ∈ P(N). A 6= ∅ =⇒ A has a smallest element

where “has a smallest element” means ∃a0 ∈ A. ∀a ∈ A. a0 ≤ a.

Proof. Theorem 3.5.1 in textbook. (induction)

16 Divisibility
Definition 16.1. For any a, d ∈ N, write d | a (d (is a factor of|divides) a, a (is divisible
by|a multiple of) d) iff ∃k ∈ N. d · k = a.

Examples. ∀a, d ∈ N

• a | a is true (because a · 1 = a)

• 1 | a is true (because 1 · a = a)

• d | 0 is true (because d · 0 = 0)

• 0 | a =⇒ a = 0 (because only 0 · 0 = 0)

Lemma 16.2 (Divisibility implies ordering in N). For any a, d ∈ N, with a 6= 0. If d | a,
then d ≤ a.

Proof.

1. Suppose d | a =⇒ ∃k ∈ N. d · k = a

2. Since a 6= 0 by hopothesis, d 6= 0, k 6= 0. So k ∈ N \ { 0 } = S(N)

3. so ∃l ∈ N. k = S(l)

4. a = d · k = d · (l + 1) = d · l + d

5. Since d+ d · l = a and d · l ∈ N, d ≤ a.

Example. ∀d ∈ N. d | 1 =⇒ d = 1.

Proof. d | 1, then by (division implies ordering) lemma, d ≤ 1, so d = 0∨ d = 1, but 0 - 1, so
d = 1.

Properties. Divisibility is reflexive, anti-symmetric and transitive. ∀a, b, c ∈ N,

1. ∃1 ∈ N. a · 1 = a =⇒ a | a

2. a | b ∧ b | a =⇒ a ≤ b ∧ b ≤ a =⇒ a = b (by above lemma and anti-symmetry of
ordering)

3. a | b ∧ b | c =⇒ ∃l,m ∈ N. a · l = b, b ·m = c =⇒ a · l ·m = c =⇒ a | c
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17 More Division
Theorem 17.1 (Division Algorithm). Let a, d ∈ N with d > 0. Then there exists q ∈ N and
r ∈ { 0, . . . , d− 1 } such that a = qd + r in N. Moreover, q ∈ N and r ∈ { 0, . . . , d− 1 } are
uniquely determined by a, d ∈ N.

Theorem (Uniqueness of q, r). Given a, d ∈ N, d > 0, if q, q′ ∈ N, r, r′ ∈ { 0, . . . , d− 1 } such
that

a = qd+ r = q′d+ r′ (17.1.1)

then q = q′, r = r′. (uniqueness)

Proof.

1. Suppose for a contradiction that r 6= r′. By comparibility of natural numbers, either
r > r′ or r′ > r.

2. Without loss of generality, assume r > r′, then

∃s ∈ N, s 6= 0. r = r′ + s

3. Then by (17.1.1), qd+ r′ + s = q′d+ r′, then by cancellation law for addition,

qd+ s = q′d (17.1.2)

4. Because s ∈ N, s 6= 0, q′d > qd, then by cancellation law for multiplication, q′ > q, so

∃t ∈ N, t 6= 0. q′ = q + t

5. By (17.1.2),

qd+ s = (q + t) · d
qd+ s = qd+ td

s = td (cancellation property of addition)
d | s (and d > 0)
d ≤ s (division implies ordering)

6. which shows d ≤ s ≤ r =⇒ d ≤ r, a contradiction with requirement that r ∈
{ 0, . . . , d− 1 }.

7. Hence r = r′, then by (17.1.1), a = qd+ r = q′d+ r.

8. qd = q′d =⇒ q = q′. (by cancellation law of +,×)

9. r = r′ and q = q′, uniqueness of r, q shown.
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Theorem (Existence of q, r). Given a, d ∈ N, d > 0, ∃q, r ∈ N with r < d such that a = qd+r.

Proof.

1. Consider the following subset of N:

S := {n ∈ N : ∃q ∈ N. a = qd+ n }

[(S consists of all natural numbers of form a− q · d for various choices of q)]

2. Then a = 0 · d+ a, shows a ∈ S, in particular S 6= ∅, then by well-ordering principle,

∃r ∈ S. ∀n ∈ S. r ≤ n

3. This means ∃q ∈ N. a = qd+ r.

Claim. r < d

• Suppose for contradiction r ≥ d, ∃k ∈ N. d+ k = r (k = r − d)
• Then a = qd+ d+ k = (q + 1) · d+ k

• This shows that k ∈ S, then by fact that r ∈ S is smallest, we must have r ≤ k.
• But d+ k = r =⇒ k ≤ r, so r = k (by anti-symmetry of ordering)
• then we have d+ r = r, cancelling +, d = 0, a contradiction with d > 0.

4. So given any number a and factor d, there exists quotient q and remainder r < d such
that a = qd+ r

Corollary 17.2. Let n ∈ N. Then ¬(n is even) ⇐⇒ (∃l ∈ N. n = 2l + 1)

Proof.

1. Apply division algorithm to n with d = 2,

∃q ∈ N, r ∈ { 0, 1 } . n = 2q + r

and q, r above are uniquely defined by n. Either r = 0 exclusive or r = 1.

2. Case r = 0, then n = 2q is even (by definition)

3. If n is odd, then ∃l ∈ N. n = 2l + 1, then

2q + 0 = n = 2l + 1

with q, l ∈ N and 0, 1 ∈ { 0, 1 } a contradiction with uniqueness of remainder

4. Case r = 1, then n = 2q + 1 is odd

5. if n is even, then ∃k ∈ N. n = 2k, again

2k + 0 = n = 2q + 1

a contradiction with uniqueness of remainder.
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Prime numbers and factorisation
Definition 17.3. A prime number is a natural number, p ∈ N such that

• p > 1 (ie. p 6= 0 ∧ p 6= 1)

• ∀d ∈ N. d | p. d = 1 ∨ d = p.

equivalently: ∀r, s ∈ N. p = r · s, one has r = 1 ∨ s = 1.

Definition 17.4. A composite number is a natural number n ∈ N such that

• n > 1 (ie. n 6= 0 ∧ n 6= 1)

• n is not prime

equivalently: ∃d ∈ N. d | n ∧ d 6= 1 ∧ d 6= n

Theorem 17.5 (Existence of prime factors). Let a ∈ N with a > 1. Then ∃p. p | a where p
is a prime number.

Proof.

1. Consider the subset
S := { d ∈ N : d > 1 ∧ d | a }

ie. S is set of all divisors of a which are > 1.

2. Then since a > 1 by given hypothesis, and a | a, we get a ∈ S, S 6= ∅. then by
well-ordering principle

∃p ∈ S. ∀d ∈ S. p ≤ d

3. so we know p ∈ N, p > 1, p | a.

Claim. p is prime.

• If not, ∃r, s ∈ N. (p = r · s) ∧ (r 6= 1) ∧ (s 6= 1). (defn of composite numbers)
• Then because s | p and p | a, s | a.
• because p ∈ S =⇒ p > 1 =⇒ p 6= 0, so s 6= 0, then s > 1, hence s ∈ S.

s = 1 · s < 2 · s
2 ≤ r

s < 2 · s ≤ r · s = p

s < p

• because 2 ≤ r and 1 < s =⇒ s 6= 0.
• s < p contradicts with p being smallest in S.

4. So every natural number a ∈ N has prime factor(s) p ∈ N where p | a.
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Theorem 17.6 (Fundamental Theorem of Arithmatic or Unique Prime Factorisation prop-
erty of N).
For any natural number a ∈ N with a > 1, there exists a (finitely many) sequence of prime
numbers p1, . . . , pr such that a =

r∏
i=1

pi.

Moreover, the primes p1, . . . , pr are unique up to reordering. ie if q1, . . . , qs is another se-

quence of primes such that a =
r∏

i=1

qi, then r = s (same number) and q1, . . . , qr, up to

re-ordering, matches p1, . . . , pr.

Existence.

Proof.

1. Given a ∈ N, a > 1, show: ∃ primes p1, . . . , pr such that a =
r∏

i=1

pi.

2. For a ∈ N, a > 1, let

Q(a) := ∃ primes p1, . . . , pr. a =
r∏

i=1

pi

3. Base case: Q(2) is true because 2 is prime, so a = 2, can take r = 1, p1 = 2.

4. Induction step: Assume a > 1 and Q(2), . . . , Q(a) true. then Q(a+ 1) true because

5. a+ 1 is either prime xor not prime

6. Case a+ 1 is prime, then Q(a+ 1) is true (take r = 1, p1 = a+ 1)

7. Case a+ 1 is not prime, then a+ 1 > 1,

∃r, s ∈ N. a+ 1 = r · s, r 6= 1, s 6= 1.

(clear that r 6= 0, s 6= 0 either)

8. r | (a+ 1) =⇒ r ≤ a+ 1 and s 6= 1 =⇒ r < a+ 1 =⇒ r ≤ a

9. Symmetrically, s ≤ a.

10. Then r, s ∈ { 2, 3, . . . , a }, so Q(r), Q(s) are true by induction hypothesis.

11. Hence ∃ primes p1, . . . , pl. r =
l∏

i=1

pi.

and ∃ primes pl+1, . . . , pl+m. s =
l+m∏
i=l+1

pi.

12. Then a+ 1 = r · s =
l∏

i=1

pi ·
l+m∏
i=l+1

pi is a product of primes.

13. by strong induction, Q(a) true for all a ≥ 2.

5



Uniqueness. (ad-hoc proof using wop, not (easily) generalisable to other context.)

Proof.

1. Suppose on contary that uniqueness of factorisation fails, consider the set

S := { a ∈ N : a > 1, a has non-unique prime factors }

ie. assuming S 6= ∅.

2. By well-ordering principle, S has smallest element a ∈ S

3. So a ∈ N, a > 1,∃ primes p1, . . . , pr, q1, . . . , qs such that a =
r∏

i=1

pi =
s∏

i=1

qi and p1, . . . , pr

and q1, . . . , qs are distinct even allowing permutation.

Claim. None of p’s appear among the q’s.

∀i ∈ { 1, . . . , r } . ∀j ∈ { 1, . . . , s } . pi 6= qj

i. Suppose ∃i ∈ { 1, . . . , r } . ∃j ∈ { 1, . . . , s } . pi = qj, then

p1 · · · pi−1 · pi+1 · · · pr =
a

pi
=

a

qj
= q1 · · · qj−1 · qj+1 · · · qr

ii. Take a′ as above expression, we have a′ < a, and having non-unique prime factors,
so a′ ∈ S, a contradiction with smallest a ∈ S.

4. Without loss of generality, assume p1 < q1, so ∃t ∈ N. t 6= 0, p1 + t = q1.

5. consider b := t · q2 · · · qs, t nonzero, so b ≥ 1.

6. Also, a = q1 · q2 · · · qs, so b < a, so b 6∈ S, ie b has the unique prime factorisation
property

7. If t = 1, then b = q2 · · · qs must be the unique prime factorisation of b. Then by above
claim, p1 does not appear among q2, . . . , qs. Yet,

b = (q1 − p1) · q2 · · · qs
= q1q2 · · · qs − p1q2 · · · qs
= p1p2 · · · pr − p1q2 · · · qs
= p1(p2 · · · pr − q2 · · · qs)

8. So p1 | b, which should appear in the prime factorisation of b, a contradiction, so t 6= 1.

9. So t = q1 − p1 > 1. Now q1 − p1 ≤ b ≤ a, so q1 − p1 6∈ S. So q1 − p1 has unique prime
factorasation, say

q1 − p1 = l1 · · · lu
where l1, . . . , lu are primes.

10. By examination of b = (q1 − pq) · q2 · · · qs = p1(p2 · · · pr − q2 · · · qs), p1 must appear in
prime factor of b.

11. But b = l1 · · · lu · q1 · · · qs is also a prime factorisation of b, but

12. I give up, this is useless.
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