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Problem 1. Let o € Q be a rational number such that the polynomial 72 — o = 0 has no
solutions in Q.

Show that Q(v/a) := {a+by/a € C:a,be Q}, where /o € C is a square root of a, is a field
under the usual arithmetic operations in C (is a subfield of C).

Proof. To prove Q(y/a) is a subfield of C, it suffices to just check for closure under addition,
multiplication, negation, reciprociation, and the existence of 0 and 1.

Presence of 0 and 1. 0,1 € Q, and since 0 = 0+ 0/a and 1 =14 0/, 0,1 € Q(/«).

Closure under +. For any pair p,q € Q(v/«), 3z, y,w, z € Q such that
p=r+yJa
g=w+ 2o

Then by associativity of + and distributivity of - over 4 in C,

pra=z+yJa+tw+z/a
=(@+w) +(y+2)Va

Because Q is a field, x + w and y + z are in Q, thus p + ¢ € Q(1/«).

Closure under -. For any pair p,q € Q(y/a), 3z,y,w, 2 € Q such that
p=z+yJa
g=w+zv/a
Then by associativity of - and distributivity,
p-q=(z+yva) (w+z2/a)
r(w + 2v/a) + yva(w + zv/a)

= 2w + 2o + ywva + yzv o a
(zw + yza) + (22 + yw) Vo

Again because Q is a field, zw + yza and 2z 4+ yw are in Q, thus p- ¢ € Q(y/«).
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Closure under —. For any p € Q(v/a), 3z,y € Q such that p = z + y/a. Then
—p=—(z+yva)= -2+ (~y)Ve.
—p € Q(y/a) because —z, —y in Q due to Q being a field.

Closure under (—)~!. For any p € Q(v/a)\ {0}, 3z,y € Q such that p = x + yy/a. Then
compute p~! in C as follows,

R 1
b P Tt+yJsa
T —yya

72 — 2«

Claim. z2 — y2%a # 0.
Case y = 0, then because p # 0,z # 0, so 2 — y2a # 0. Case y # 0, then Iy~ € Q. Suppose
for a contradiction 22 — y2a = 0, then we have

()@ — ) =0

() =0

but since Q is a field and y # 0 by assumption, (%)2 € Q, contradicting with fact that T2 —a = 0
has no solution in Q. Hence 2% — y?«a # 0 and its reciprocal exists in Q.

1 _ T ) —1
Therefore p~! = e e Va, and because z,y,a € Q, p~! € Q(/a). O

Problem 2. Define V := C®, consider the following subsets of V. Which are R-vector spaces?
Which are C-vector spaces? Justify.

Notation. Let 0y : C — C, z — 0 denote the zero vector which is the constant function of Oc.
For each part, let the subset be called W.

Due to the sets below being subsets of V' under the same operations, it suffices to check if W in
each part is a subspace having 0y, closure under addition and scalar multiplication.

(i) all f € V such that f(0) = 1;
Because 0y (0) =0 # 1, W is not a vector space due to absense of 0y . |

(ii) all f € V such that f(0) = f(1);
Ov(0) = Oy (1) =0, so the zero vector is in W.
Take any pair f,g € W, then

closure under vector addition holds.
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(iii)

Take any f € W, then for any k € C and k € R,

(kf)(0) = k- f(0)
=k-f(1)
= (kf)(1)
W is both a R and C-vector space. |

all f € V such that for every z € C, one has f(z) = f(2);

VzeC. Oy(2) =0=0, so Oy is in W.

Forany z€ C,Z =2 < z€eR.

Take any pair f,g € W, then for any z € C, (f + g)(2) = f(2) + g(2), since f(z),9(z) € R
and R is a subfield of C, (f + ¢g)(z) € R and thus closure under vector addition holds.

Take any non-zero f from W, take any k € C where k = a + bi,a,b € R, b # 0, then for
any z € C where f(z) # 0,

(kf)(z) = k- f(z)

= (a+0i)- f(2)

=a-f(z)+(b- f(2))i
Since 3k € C, f € W where Im((kf)(2)) # 0 < (kf)(z) € R, closure under scalar
multiplication is broken and this set is not a C-vector space.
However, for any f € V where for every z € C, f(z) € R. For any k € R, z € C, because R
is a subfield, (kf)(z) =k - f(2) € R. Hence W is a R-vector space. |
all f € V such that for every z € C, one has f(Z) = f(z);
Oy is a constant function and ignores its parameter, satisfying the condition, thus 0y € W.

For any pair f,g € W, then for any z € C,

=(f+9)(2)
Thus closure under vector addition holds.
For any f € W,k € C, for all z € C,

(k)(Z) =k f(z)

=k-f(2)

= (kf)(2)
Closure under scalar multiplication holds (also holds for k& € R). W is both a R and
C-vector space. |

all f € V such that for every z € C, one has f(2?) = f(2)?
Take f = g = id¢, clear that property above holds. Take z =2 € C,

(f +9)(2°) = f(4) + g(4)

=8
(f+9)(2)7=(f(2) +9(2)°
=42=16
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We can see that (f + ¢)(2%) # (f + ¢)(2)%, thus f + g ¢ W, closure under vector addition
is broken and W is not a R or C-vector space. |

Definition. Let K be a field, V a K-vector space. For any K-subspaces U, W C V, define
U+W:={veV:uelUweWv=u+w}.

Problem 3. Let V := R®. Consider Viyen (resp. Voqq) as subsets of all even (resp. odd)
functions.

Notation. Let 0y : R — R, x — 0 denote the zero vector which is the constant function of Og.
(a) Show that Viyen and Vyqq are R-subspaces of V.

Proof. Firstly, Vo € R. 0y (z) = 0, trivially 0y € Voqq and Oy € Viyen.
Consider f, g € Voyen, then Vz € R,

(f+9)(—z) = f(—2) + g(—=)
= f(z) +g(z)
=(f+9)()
Thus f + g € Veven. Consider any f € Viyen, k € R, then Vz € R,
(kf)(—z) =k f(—x)
=k f(z)
= (kf)(z)

Thus kf € Veven. Therefore Viyen is a subspace of V.
Now consider f,g € Voqq, then Vo € R,

(f +9)(=z) = f(=2) + g(—)
)

Thus f + g € Voqq. Consider any f € Voqq, k € R, then Vz € R,

(bf)(=2) = k- (=)
=k (=)
= k- f(2)
~(k - f(@)) = (kD))

Thus kf € Voqq- Therefore Vyqq is a subspace of V. O
(b) Show that Veyen N Voaa = { Oy } and Veyen + Voaa = V.

Proof. Take f € Viyen N Voad, f is both even and odd, so Vx € R,

f(=z) = f(z) and f(-z) = —f(x).
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So f(x) = —f(z) for all z € R, which is the case if and only if for all z € R, f(z) = 0. This
means f is the constant function of 0, that is Oy, this implies Voyen N Voaa = { Ov }.

Consider any h € Vioyen + Voad, by definition, 3f € Veven, 9 € Voaa- h = f + ¢. Since Veyen
and Voqq are subspaces of V., h=f+g €V, 50 Veyen + Voaa C V.

Conversely take f € V. For all x € R,

f(z) = f(x) + 0y (x)
1 1 1 1
= 5/ @) + 5 (@) + 5 f(-2) = 5 f(-2)
= L)+ T2 + 5 (1)~ f(-a)

Define g,h: R — R as

g: e 2(f(@) + f(—2))

2
heae 5 (f@) — (o)
Verify that g € Veven and h € Voqa.
o(-2) = 2(f(~2) + F(~(~))
= 2 (@) + f(-)
W) = 5(f(~2) ~ f(~(~2)))
= (@) - f(~2)

Because f = g+ h, f € Veven + Vodd- S0 V' C Viven + Voda and this completes the proof
that Voven + Voaa = V. O

Problem 4. Let K be any field, let V' be a K-vector space, and let V1, V5 C V be K-subspaces
of V. Suppose Vi1 N Vo ={ 0y } and V] + V5 = V. Show that for any v € V, there exist unique
vectors v1 € V] and vy € V5 such that v = vy +v5 in V.

Proof. Take any arbitary v € V, since Vi + Vo = V., by definition of V7 + V5, there exists
v1 € V1,09 € V5 such that v = vy + vs.
Suppose Jv] € Vi, v5 € Vo where v = v} + v5.

/ /
v =v1 + V2 = V] + vy

V] — V] = vh — Vg

Clearly LHS € V; and RHS € V5 due to closure under vector addition. This implies LHS =
RHS = 0y since V1 NV, = { 0y }, thus we have v; = v] and vy = v}, completing the uniqueness
proof. O

Problem 5. Let K be any field, let V' be a K-vector space, and let V1, V5 C V be K-subspaces
of V. Suppose the set-theoretic union Vi U V5 is also a K-subspace of V. Show that one of the
subspaces V7 or V5 is contained in the other.
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Proof. V1 U V5 is also a K-subspace of V| Suppose for a contradiction neither V; nor V5 is
contained in the other. Means that V4 \ (V1 NV4) and V5 \ (V1 NV4) are both non-empty, namely
there exists v1 € Vi, vs € Vo where vy, ve € Vi NV, Clearly vy, vy € V3 UV,. By closure property
of vector addition in a subspace, v1 +vs € V1 UV5. Case v1 +vo € Vi, then vy +v9 —vy = vy € V7,
contradicting fact that vy € V1 NV5. A symmetric argument shows that v + v cannot be in V3,
thus a contradiction. O]

Problem 6. Let K be an infinite field, let V' be a vector space over K, and let Vp,...V,, CV

be a finite list of proper K-subspaces over V. Show that V U V.
j=1

Proof. Let n € N, Vq,...,V,, CV be a finite list of proper K-subspaces over V. Suppose for a
n

contradiction that V' = U V;. Trivially, n cannot be 0 or 1, result of Q5 implies n # 2, so n > 3.
i=1
Using an algorithm, we can remove subspaces in the list as such,

1. Foreach z € {1,2,...,n},

2. If U V; =V, remove V,, from the list.
i#T
Since list is finite, algorithm halts. Therefore, without loss of generality, we can assume that for
any x € {1,...,n},

V:CJV;;AUVi, and

i=1 it
VA Jvi#0.
Now take vectors
uEVl\UViandwevz\UVi
i£1 i£2
For any a € K \ {0k }, define
Vg ‘= U + aw.

n
It is clear that v, € V = U V;. Suppose v, € Vi, then ail(va —u) = w € Vi, contradicting
i=1
w ¢ V; for any i # 2. So v, ¢ V1. Suppose v, € Vo, then v, — aw = u € Vo, contradicting u ¢ V;
n

for any i # 1. SOUQEUVQ.

i=3
|[K\{Ok }| = oo while |{V3,...,V,, }| =n—2. Since |[K\{0x }| > |{V3,..., Vi }|, there does
not exist an injective map K \ {0x } — {Vs,...,V,, }. Now consider the following maps,

n
fiE\{0x}— |V
i=3
a+— Vg = U+ aw;

g:UVlv%{Vg,...,Vn}
i=3
vV
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where V; is the lowest-indexed subspace fulfilling v € V;.
We have go f : K\ {0k} — {V5,...,V, }, which as shown, cannot be injective. This means
that 3a,b € K\ {0k },V; € {Va,...,Va}. a#bA(go f)(a) = (go f)(b). So we can conclude
that

Ve {Vs,..., Vo }, a,be K\ {0k }.a#band v,,v € V.

Then v, — vy € V; due to closure property of subspace,
Vo — Up = (u+ aw) — (u + bw)
=(a—bw

Since a # b, a — b # Ok, by closure property this implies (a —b)™! - (a —b)w € V; = w eV},
contradicting fact that Vi # 2. w ¢ V;.
Therefore V' cannot be a union of a finite list of proper K-subspaces. O



