MA2101S Homework 1

Qi Ji

A0167793L

31st January 2018

Problem 1. Let $\alpha \in \mathbb{Q}$ be a rational number such that the polynomial $T^2 - \alpha = 0$ has no solutions in \mathbb{Q} . Show that $\mathbb{Q}(\sqrt{\alpha}) := \{a + b\sqrt{\alpha} \in \mathbb{C} : a, b \in \mathbb{Q}\}$, where $\sqrt{\alpha} \in \mathbb{C}$ is a square root of α , is a field under the usual arithmetic operations in \mathbb{C} (is a subfield of \mathbb{C}).

Proof. To prove $\mathbb{Q}(\sqrt{\alpha})$ is a subfield of \mathbb{C} , it suffices to just check for closure under addition, multiplication, negation, reciprociation, and the existence of 0 and 1.

Presence of 0 and 1. $0, 1 \in \mathbb{Q}$, and since $0 = 0 + 0\sqrt{\alpha}$ and $1 = 1 + 0\sqrt{\alpha}$, $0, 1 \in \mathbb{Q}(\sqrt{\alpha})$.

Closure under +. For any pair $p, q \in \mathbb{Q}(\sqrt{\alpha}), \exists x, y, w, z \in \mathbb{Q}$ such that

$$p = x + y\sqrt{\alpha}$$
$$q = w + z\sqrt{\alpha}$$

Then by associativity of + and distributivity of \cdot over + in \mathbb{C} ,

$$p + q = x + y\sqrt{\alpha} + w + z\sqrt{\alpha}$$
$$= (x + w) + (y + z)\sqrt{\alpha}$$

Because \mathbb{Q} is a field, x + w and y + z are in \mathbb{Q} , thus $p + q \in \mathbb{Q}(\sqrt{\alpha})$.

Closure under . For any pair $p, q \in \mathbb{Q}(\sqrt{\alpha}), \exists x, y, w, z \in \mathbb{Q}$ such that

$$p = x + y\sqrt{\alpha}$$
$$q = w + z\sqrt{\alpha}$$

Then by associativity of \cdot and distributivity,

$$p \cdot q = (x + y\sqrt{\alpha}) \cdot (w + z\sqrt{\alpha})$$
$$= x(w + z\sqrt{\alpha}) + y\sqrt{\alpha}(w + z\sqrt{\alpha})$$
$$= xw + xz\sqrt{\alpha} + yw\sqrt{\alpha} + yz\sqrt{\alpha}\sqrt{\alpha}$$
$$= (xw + yz\alpha) + (xz + yw)\sqrt{\alpha}$$

Again because \mathbb{Q} is a field, $xw + yz\alpha$ and xz + yw are in \mathbb{Q} , thus $p \cdot q \in \mathbb{Q}(\sqrt{\alpha})$.

Closure under –. For any $p \in \mathbb{Q}(\sqrt{\alpha}), \exists x, y \in \mathbb{Q}$ such that $p = x + y\sqrt{\alpha}$. Then

$$-p = -(x + y\sqrt{\alpha}) = -x + (-y)\sqrt{\alpha}.$$

 $-p \in \mathbb{Q}(\sqrt{\alpha})$ because -x, -y in \mathbb{Q} due to \mathbb{Q} being a field.

Closure under $(-)^{-1}$. For any $p \in \mathbb{Q}(\sqrt{\alpha}) \setminus \{0\}$, $\exists x, y \in \mathbb{Q}$ such that $p = x + y\sqrt{\alpha}$. Then compute p^{-1} in \mathbb{C} as follows,

$$p^{-1} = \frac{1}{p} = \frac{1}{x + y\sqrt{\alpha}}$$
$$= \frac{x - y\sqrt{\alpha}}{x^2 - y^2\alpha}$$

Claim. $x^2 - y^2 \alpha \neq 0$.

Case y = 0, then because $p \neq 0, x \neq 0$, so $x^2 - y^2 \alpha \neq 0$. Case $y \neq 0$, then $\exists y^{-1} \in \mathbb{Q}$. Suppose for a contradiction $x^2 - y^2 \alpha = 0$, then we have

$$(y^{-1})^2(x^2 - y^2\alpha) = 0$$
$$\left(\frac{x}{y}\right)^2 - \alpha = 0$$

but since \mathbb{Q} is a field and $y \neq 0$ by assumption, $(\frac{x}{y})^2 \in \mathbb{Q}$, contradicting with fact that $T^2 - \alpha = 0$ has no solution in \mathbb{Q} . Hence $x^2 - y^2 \alpha \neq 0$ and its reciprocal exists in \mathbb{Q} .

Therefore
$$p^{-1} = \frac{x}{x^2 - y^2 \alpha} - \frac{y}{x^2 - y^2 \alpha} \sqrt{\alpha}$$
, and because $x, y, \alpha \in \mathbb{Q}, p^{-1} \in \mathbb{Q}(\sqrt{\alpha})$.

Problem 2. Define $V := \mathbb{C}^{\mathbb{C}}$, consider the following subsets of V. Which are \mathbb{R} -vector spaces? Which are \mathbb{C} -vector spaces? Justify.

Notation. Let $\theta_V : \mathbb{C} \to \mathbb{C}, z \mapsto 0$ denote the zero vector which is the constant function of $0_{\mathbb{C}}$. For each part, let the subset be called W.

Due to the sets below being subsets of V under the same operations, it suffices to check if W in each part is a subspace having θ_V , closure under addition and scalar multiplication.

(i) all $f \in V$ such that f(0) = 1;

Because $\theta_V(0) = 0 \neq 1$, W is not a vector space due to absense of θ_V .

(ii) all $f \in V$ such that f(0) = f(1);

 $\theta_V(0) = \theta_V(1) = 0$, so the zero vector is in W.

Take any pair $f, g \in W$, then

$$(f+g)(0) = f(0) + g(0)$$

= $f(1) + g(1)$
= $(f+g)(1)$

closure under vector addition holds.

Take any $f \in W$, then for any $k \in \mathbb{C}$ and $k \in \mathbb{R}$,

$$\begin{aligned} (kf)(0) &= k \cdot f(0) \\ &= k \cdot f(1) \\ &= (kf)(1) \end{aligned}$$

W is both a \mathbb{R} and \mathbb{C} -vector space.

(iii) all
$$f \in V$$
 such that for every $z \in \mathbb{C}$, one has $f(z) = f(z)$;

 $\forall z \in \mathbb{C}. \ \overline{\theta_V(z)} = \overline{0} = 0, \text{ so } \theta_V \text{ is in } W.$

For any $z \in \mathbb{C}, \overline{z} = z \iff z \in \mathbb{R}$.

Take any pair $f, g \in W$, then for any $z \in \mathbb{C}$, (f+g)(z) = f(z) + g(z), since $f(z), g(z) \in \mathbb{R}$ and \mathbb{R} is a subfield of \mathbb{C} , $(f+g)(z) \in \mathbb{R}$ and thus closure under vector addition holds.

Take any non-zero f from W, take any $k \in \mathbb{C}$ where $k = a + bi, a, b \in \mathbb{R}, b \neq 0$, then for any $z \in \mathbb{C}$ where $f(z) \neq 0$,

$$\begin{split} (kf)(z) &= k \cdot f(z) \\ &= (a+bi) \cdot f(z) \\ &= a \cdot f(z) + (b \cdot f(z))i \end{split}$$

Since $\exists k \in \mathbb{C}, f \in W$ where $\operatorname{Im}((kf)(z)) \neq 0 \iff (kf)(z) \notin \mathbb{R}$, closure under scalar multiplication is broken and this set is not a \mathbb{C} -vector space.

However, for any $f \in V$ where for every $z \in \mathbb{C}$, $f(z) \in \mathbb{R}$. For any $k \in \mathbb{R}, z \in \mathbb{C}$, because \mathbb{R} is a subfield, $(kf)(z) = k \cdot f(z) \in \mathbb{R}$. Hence W is a \mathbb{R} -vector space.

(iv) all $f \in V$ such that for every $z \in \mathbb{C}$, one has $f(\overline{z}) = f(z)$; θ_V is a constant function and ignores its parameter, satisfying the condition, thus $\theta_V \in W$. For any pair $f, g \in W$, then for any $z \in \mathbb{C}$,

$$(f+g)(\overline{z}) = f(\overline{z}) + g(\overline{z})$$
$$= f(z) + g(z)$$
$$= (f+g)(z)$$

Thus closure under vector addition holds.

For any $f \in W, k \in \mathbb{C}$, for all $z \in \mathbb{C}$,

$$(kf)(\overline{z}) = k \cdot f(\overline{z})$$
$$= k \cdot f(z)$$
$$= (kf)(z)$$

Closure under scalar multiplication holds (also holds for $k \in \mathbb{R}$). W is both a \mathbb{R} and \mathbb{C} -vector space.

(v) all $f \in V$ such that for every $z \in \mathbb{C}$, one has $f(z^2) = f(z)^2$; Take $f = g = \mathrm{id}_{\mathbb{C}}$, clear that property above holds. Take $z = 2 \in \mathbb{C}$,

$$(f+g)(2^2) = f(4) + g(4)$$

= 8
$$(f+g)(2)^2 = (f(2) + g(2))^2$$

= 4² = 16

We can see that $(f+g)(2^2) \neq (f+g)(2)^2$, thus $f+g \notin W$, closure under vector addition is broken and W is not a \mathbb{R} or \mathbb{C} -vector space.

Definition. Let K be a field, V a K-vector space. For any K-subspaces $U, W \subseteq V$, define

 $U + W := \{ v \in V : \exists u \in U, w \in W. \ v = u + w \}.$

Problem 3. Let $V := \mathbb{R}^{\mathbb{R}}$. Consider V_{even} (resp. V_{odd}) as subsets of all even (resp. odd) functions.

Notation. Let $\theta_V : \mathbb{R} \to \mathbb{R}, x \mapsto 0$ denote the zero vector which is the constant function of $0_{\mathbb{R}}$.

(a) Show that V_{even} and V_{odd} are \mathbb{R} -subspaces of V.

Proof. Firstly, $\forall x \in \mathbb{R}$. $\theta_V(x) = 0$, trivially $\theta_V \in V_{\text{odd}}$ and $\theta_V \in V_{\text{even}}$. Consider $f, g \in V_{\text{even}}$, then $\forall x \in \mathbb{R}$,

$$(f+g)(-x) = f(-x) + g(-x)$$

= $f(x) + g(x)$
= $(f+g)(x)$

Thus $f + g \in V_{\text{even}}$. Consider any $f \in V_{\text{even}}, k \in \mathbb{R}$, then $\forall x \in \mathbb{R}$,

$$(kf)(-x) = k \cdot f(-x)$$
$$= k \cdot f(x)$$
$$= (kf)(x)$$

Thus $kf \in V_{\text{even}}$. Therefore V_{even} is a subspace of V. Now consider $f, g \in V_{\text{odd}}$, then $\forall x \in \mathbb{R}$,

$$(f+g)(-x) = f(-x) + g(-x) = -f(x) - g(x) = -(f(x) + g(x)) = -(f + g)(x)$$

Thus $f + g \in V_{\text{odd}}$. Consider any $f \in V_{\text{odd}}, k \in \mathbb{R}$, then $\forall x \in \mathbb{R}$,

$$\begin{aligned} (kf)(-x) &= k \cdot f(-x) \\ &= k \cdot (-f(x)) \\ &= -k \cdot f(x) \\ &= -(k \cdot f(x)) = -(kf)(x) \end{aligned}$$

Thus $kf \in V_{\text{odd}}$. Therefore V_{odd} is a subspace of V.

(b) Show that $V_{\text{even}} \cap V_{\text{odd}} = \{ \theta_V \}$ and $V_{\text{even}} + V_{\text{odd}} = V$.

Proof. Take $f \in V_{\text{even}} \cap V_{\text{odd}}$, f is both even and odd, so $\forall x \in \mathbb{R}$,

$$f(-x) = f(x)$$
 and $f(-x) = -f(x)$.

So f(x) = -f(x) for all $x \in \mathbb{R}$, which is the case if and only if for all $x \in \mathbb{R}$, f(x) = 0. This means f is the constant function of 0, that is θ_V , this implies $V_{\text{even}} \cap V_{\text{odd}} = \{ \theta_V \}$. Consider any $h \in V_{\text{even}} + V_{\text{odd}}$, by definition, $\exists f \in V_{\text{even}}, g \in V_{\text{odd}}$. h = f + g. Since V_{even} and V_{odd} are subspaces of V, $h = f + g \in V$, so $V_{\text{even}} + V_{\text{odd}} \subseteq V$.

Conversely take $f \in V$. For all $x \in \mathbb{R}$,

$$\begin{split} f(x) &= f(x) + \theta_V(x) \\ &= \frac{1}{2}f(x) + \frac{1}{2}f(x) + \frac{1}{2}f(-x) - \frac{1}{2}f(-x) \\ &= \frac{1}{2}(f(x) + f(-x)) + \frac{1}{2}(f(x) - f(-x)) \end{split}$$

Define $g, h : \mathbb{R} \to \mathbb{R}$ as

$$g: x \mapsto \frac{1}{2}(f(x) + f(-x))$$
$$h: x \mapsto \frac{1}{2}(f(x) - f(-x))$$

Verify that $g \in V_{\text{even}}$ and $h \in V_{\text{odd}}$.

$$g(-x) = \frac{1}{2}(f(-x) + f(-(-x)))$$

= $\frac{1}{2}(f(x) + f(-x))$
 $h(-x) = \frac{1}{2}(f(-x) - f(-(-x)))$
= $-\frac{1}{2}(f(x) - f(-x))$

Because f = g + h, $f \in V_{\text{even}} + V_{\text{odd}}$. So $V \subseteq V_{\text{even}} + V_{\text{odd}}$ and this completes the proof that $V_{\text{even}} + V_{\text{odd}} = V$.

Problem 4. Let K be any field, let V be a K-vector space, and let $V_1, V_2 \subseteq V$ be K-subspaces of V. Suppose $V_1 \cap V_2 = \{ \ 0_V \}$ and $V_1 + V_2 = V$. Show that for any $v \in V$, there exist unique vectors $v_1 \in V_1$ and $v_2 \in V_2$ such that $v = v_1 + v_2$ in V.

Proof. Take any arbitrary $v \in V$, since $V_1 + V_2 = V$, by definition of $V_1 + V_2$, there exists $v_1 \in V_1, v_2 \in V_2$ such that $v = v_1 + v_2$. Suppose $\exists v'_1 \in V_1, v'_2 \in V_2$ where $v = v'_1 + v'_2$.

$$v = v_1 + v_2 = v'_1 + v'_2$$

 $v_1 - v'_1 = v'_2 - v_2$

Clearly $LHS \in V_1$ and $RHS \in V_2$ due to closure under vector addition. This implies $LHS = RHS = \theta_V$ since $V_1 \cap V_2 = \{ \theta_V \}$, thus we have $v_1 = v'_1$ and $v_2 = v'_2$, completing the uniqueness proof.

Problem 5. Let K be any field, let V be a K-vector space, and let $V_1, V_2 \subseteq V$ be K-subspaces of V. Suppose the set-theoretic union $V_1 \cup V_2$ is also a K-subspace of V. Show that one of the subspaces V_1 or V_2 is contained in the other.

Proof. $V_1 \cup V_2$ is also a *K*-subspace of *V*, Suppose for a contradiction neither V_1 nor V_2 is contained in the other. Means that $V_1 \setminus (V_1 \cap V_2)$ and $V_2 \setminus (V_1 \cap V_2)$ are both non-empty, namely there exists $v_1 \in V_1, v_2 \in V_2$ where $v_1, v_2 \notin V_1 \cap V_2$. Clearly $v_1, v_2 \in V_1 \cup V_2$. By closure property of vector addition in a subspace, $v_1 + v_2 \in V_1 \cup V_2$. Case $v_1 + v_2 \in V_1$, then $v_1 + v_2 - v_1 = v_2 \in V_1$, contradicting fact that $v_2 \notin V_1 \cap V_2$. A symmetric argument shows that $v_1 + v_2$ cannot be in V_2 , thus a contradiction.

Problem 6. Let K be an infinite field, let V be a vector space over K, and let $V_1, \ldots, V_n \subset V$ be a finite list of proper K-subspaces over V. Show that $V \neq \bigcup_{i=1}^{n} V_j$.

Proof. Let $n \in \mathbb{N}, V_1, \ldots, V_n \subset V$ be a finite list of proper K-subspaces over V. Suppose for a contradiction that $V = \bigcup_{i=1}^{n} V_i$. Trivially, n cannot be 0 or 1, result of Q5 implies $n \neq 2$, so $n \geq 3$.

Using an algorithm, we can remove subspaces in the list as such,

- 1. For each $x \in \{1, 2, ..., n\},\$
- 2. If $\bigcup_{i \neq x} V_i = V$, remove V_x from the list.

Since list is finite, algorithm halts. Therefore, without loss of generality, we can assume that for any $x \in \{1, ..., n\}$,

$$V = \bigcup_{i=1}^{n} V_i \neq \bigcup_{i \neq x} V_i, \text{ and}$$
$$V_x \setminus \bigcup_{i \neq x} V_i \neq \emptyset.$$

Now take vectors

$$u \in V_1 \setminus \bigcup_{i \neq 1} V_i \text{ and } w \in V_2 \setminus \bigcup_{i \neq 2} V_i$$

For any $a \in K \setminus \{0_K\}$, define

$$v_a := u + aw.$$

It is clear that $v_a \in V = \bigcup_{i=1}^{n} V_i$. Suppose $v_a \in V_1$, then $a^{-1}(v_a - u) = w \in V_1$, contradicting $w \notin V_i$ for any $i \neq 2$. So $v_a \notin V_1$. Suppose $v_a \in V_2$, then $v_a - aw = u \in V_2$, contradicting $u \notin V_i$ for any $i \neq 1$. So $v_a \in \bigcup_{i=3}^{n} V_i$.

 $|K \setminus \{0_K\}| = \infty$ while $|\{V_3, \dots, V_n\}| = n-2$. Since $|K \setminus \{0_K\}| > |\{V_3, \dots, V_n\}|$, there does not exist an injective map $K \setminus \{0_K\} \rightarrow \{V_3, \dots, V_n\}$. Now consider the following maps,

$$f: K \setminus \{ 0_K \} \to \bigcup_{i=3}^n V_i$$
$$a \mapsto v_a = u + aw_i$$
$$g: \bigcup_{i=3}^n V_i \to \{ V_3, \dots, V_n \}$$
$$v \mapsto V_j$$

where V_j is the lowest-indexed subspace fulfilling $v \in V_j$.

We have $g \circ f : K \setminus \{0_K\} \to \{V_3, \ldots, V_n\}$, which as shown, cannot be injective. This means that $\exists a, b \in K \setminus \{0_K\}, V_j \in \{V_3, \ldots, V_n\}$. $a \neq b \land (g \circ f)(a) = (g \circ f)(b)$. So we can conclude that

$$\exists V_j \in \{V_3, \dots, V_n\}, a, b \in K \setminus \{0_K\}. a \neq b \text{ and } v_a, v_b \in V_j.$$

Then $v_a - v_b \in V_j$ due to closure property of subspace,

$$v_a - v_b = (u + aw) - (u + bw)$$
$$= (a - b)w$$

Since $a \neq b$, $a - b \neq 0_K$, by closure property this implies $(a - b)^{-1} \cdot (a - b)w \in V_j \implies w \in V_j$, contradicting fact that $\forall i \neq 2. \ w \notin V_i$.

Therefore V cannot be a union of a finite list of proper K-subspaces.