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Problem 1. Let α ∈ Q be a rational number such that the polynomial T 2 − α = 0 has no
solutions in Q.
Show that Q(

√
α) := { a+ b

√
α ∈ C : a, b ∈ Q }, where

√
α ∈ C is a square root of α, is a field

under the usual arithmetic operations in C (is a subfield of C).

Proof. To prove Q(
√
α) is a subfield of C, it suffices to just check for closure under addition,

multiplication, negation, reciprociation, and the existence of 0 and 1.

Presence of 0 and 1. 0, 1 ∈ Q, and since 0 = 0 + 0
√
α and 1 = 1 + 0

√
α, 0, 1 ∈ Q(

√
α).

Closure under +. For any pair p, q ∈ Q(
√
α), ∃x, y, w, z ∈ Q such that

p = x+ y
√
α

q = w + z
√
α

Then by associativity of + and distributivity of · over + in C,

p+ q = x+ y
√
α+ w + z

√
α

= (x+ w) + (y + z)
√
α

Because Q is a field, x+ w and y + z are in Q, thus p+ q ∈ Q(
√
α).

Closure under ·. For any pair p, q ∈ Q(
√
α), ∃x, y, w, z ∈ Q such that

p = x+ y
√
α

q = w + z
√
α

Then by associativity of · and distributivity,

p · q = (x+ y
√
α) · (w + z

√
α)

= x(w + z
√
α) + y

√
α(w + z

√
α)

= xw + xz
√
α+ yw

√
α+ yz

√
α
√
α

= (xw + yzα) + (xz + yw)
√
α

Again because Q is a field, xw + yzα and xz + yw are in Q, thus p · q ∈ Q(
√
α).
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Closure under −. For any p ∈ Q(
√
α), ∃x, y ∈ Q such that p = x+ y

√
α. Then

−p = −(x+ y
√
α) = −x+ (−y)

√
α.

−p ∈ Q(
√
α) because −x,−y in Q due to Q being a field.

Closure under (−)−1. For any p ∈ Q(
√
α) \ { 0 }, ∃x, y ∈ Q such that p = x + y

√
α. Then

compute p−1 in C as follows,

p−1 =
1

p
=

1

x+ y
√
α

=
x− y

√
α

x2 − y2α

Claim. x2 − y2α 6= 0.
Case y = 0, then because p 6= 0, x 6= 0, so x2 − y2α 6= 0. Case y 6= 0, then ∃y−1 ∈ Q. Suppose
for a contradiction x2 − y2α = 0, then we have

(y−1)2(x2 − y2α) = 0(
x

y

)2

− α = 0

but since Q is a field and y 6= 0 by assumption, (xy )
2 ∈ Q, contradicting with fact that T 2−α = 0

has no solution in Q. Hence x2 − y2α 6= 0 and its reciprocal exists in Q.
Therefore p−1 =

x

x2 − y2α
− y

x2 − y2α

√
α, and because x, y, α ∈ Q, p−1 ∈ Q(

√
α).

Problem 2. Define V := CC, consider the following subsets of V . Which are R-vector spaces?
Which are C-vector spaces? Justify.

Notation. Let 0V : C → C, z 7→ 0 denote the zero vector which is the constant function of 0C.
For each part, let the subset be called W .

Due to the sets below being subsets of V under the same operations, it suffices to check if W in
each part is a subspace having 0V , closure under addition and scalar multiplication.

(i) all f ∈ V such that f(0) = 1;
Because 0V (0) = 0 6= 1, W is not a vector space due to absense of 0V . �

(ii) all f ∈ V such that f(0) = f(1);
0V (0) = 0V (1) = 0, so the zero vector is in W .
Take any pair f, g ∈ W , then

(f + g)(0) = f(0) + g(0)

= f(1) + g(1)

= (f + g)(1)

closure under vector addition holds.
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Take any f ∈ W , then for any k ∈ C and k ∈ R,

(kf)(0) = k · f(0)
= k · f(1)
= (kf)(1)

W is both a R and C-vector space. �

(iii) all f ∈ V such that for every z ∈ C, one has f(z) = f(z);
∀z ∈ C. 0V (z) = 0 = 0, so 0V is in W .
For any z ∈ C, z = z ⇐⇒ z ∈ R.
Take any pair f, g ∈ W , then for any z ∈ C, (f + g)(z) = f(z) + g(z), since f(z), g(z) ∈ R
and R is a subfield of C, (f + g)(z) ∈ R and thus closure under vector addition holds.
Take any non-zero f from W , take any k ∈ C where k = a + bi, a, b ∈ R, b 6= 0, then for
any z ∈ C where f(z) 6= 0,

(kf)(z) = k · f(z)
= (a+ bi) · f(z)
= a · f(z) + (b · f(z))i

Since ∃k ∈ C, f ∈ W where Im((kf)(z)) 6= 0 ⇐⇒ (kf)(z) 6∈ R, closure under scalar
multiplication is broken and this set is not a C-vector space.
However, for any f ∈ V where for every z ∈ C, f(z) ∈ R. For any k ∈ R, z ∈ C, because R
is a subfield, (kf)(z) = k · f(z) ∈ R. Hence W is a R-vector space. �

(iv) all f ∈ V such that for every z ∈ C, one has f(z) = f(z);
0V is a constant function and ignores its parameter, satisfying the condition, thus 0V ∈ W .
For any pair f, g ∈ W , then for any z ∈ C,

(f + g)(z) = f(z) + g(z)

= f(z) + g(z)

= (f + g)(z)

Thus closure under vector addition holds.
For any f ∈ W,k ∈ C, for all z ∈ C,

(kf)(z) = k · f(z)
= k · f(z)
= (kf)(z)

Closure under scalar multiplication holds (also holds for k ∈ R). W is both a R and
C-vector space. �

(v) all f ∈ V such that for every z ∈ C, one has f(z2) = f(z)2;
Take f = g = idC, clear that property above holds. Take z = 2 ∈ C,

(f + g)(22) = f(4) + g(4)

= 8

(f + g)(2)2 = (f(2) + g(2))2

= 42 = 16
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We can see that (f + g)(22) 6= (f + g)(2)2, thus f + g /∈ W , closure under vector addition
is broken and W is not a R or C-vector space. �

Definition. Let K be a field, V a K-vector space. For any K-subspaces U,W ⊆ V , define

U +W := { v ∈ V : ∃u ∈ U,w ∈ W. v = u+ w } .

Problem 3. Let V := RR. Consider Veven (resp. Vodd) as subsets of all even (resp. odd)
functions.

Notation. Let 0V : R → R, x 7→ 0 denote the zero vector which is the constant function of 0R.

(a) Show that Veven and Vodd are R-subspaces of V .

Proof. Firstly, ∀x ∈ R. 0V (x) = 0, trivially 0V ∈ Vodd and 0V ∈ Veven.
Consider f, g ∈ Veven, then ∀x ∈ R,

(f + g)(−x) = f(−x) + g(−x)

= f(x) + g(x)

= (f + g)(x)

Thus f + g ∈ Veven. Consider any f ∈ Veven, k ∈ R, then ∀x ∈ R,

(kf)(−x) = k · f(−x)

= k · f(x)
= (kf)(x)

Thus kf ∈ Veven. Therefore Veven is a subspace of V .
Now consider f, g ∈ Vodd, then ∀x ∈ R,

(f + g)(−x) = f(−x) + g(−x)

= −f(x)− g(x)

= −(f(x) + g(x))

= −(f + g)(x)

Thus f + g ∈ Vodd. Consider any f ∈ Vodd, k ∈ R, then ∀x ∈ R,

(kf)(−x) = k · f(−x)

= k · (−f(x))

= −k · f(x)
= −(k · f(x)) = −(kf)(x)

Thus kf ∈ Vodd. Therefore Vodd is a subspace of V .

(b) Show that Veven ∩ Vodd = { 0V } and Veven + Vodd = V .

Proof. Take f ∈ Veven ∩ Vodd, f is both even and odd, so ∀x ∈ R,

f(−x) = f(x) and f(−x) = −f(x).
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So f(x) = −f(x) for all x ∈ R, which is the case if and only if for all x ∈ R, f(x) = 0. This
means f is the constant function of 0, that is 0V , this implies Veven ∩ Vodd = { 0V }.
Consider any h ∈ Veven + Vodd, by definition, ∃f ∈ Veven, g ∈ Vodd. h = f + g. Since Veven
and Vodd are subspaces of V , h = f + g ∈ V , so Veven + Vodd ⊆ V .
Conversely take f ∈ V . For all x ∈ R,

f(x) = f(x) + 0V (x)

=
1

2
f(x) +

1

2
f(x) +

1

2
f(−x)− 1

2
f(−x)

=
1

2
(f(x) + f(−x)) +

1

2
(f(x)− f(−x))

Define g, h : R → R as

g : x 7→ 1

2
(f(x) + f(−x))

h : x 7→ 1

2
(f(x)− f(−x))

Verify that g ∈ Veven and h ∈ Vodd.

g(−x) =
1

2
(f(−x) + f(−(−x)))

=
1

2
(f(x) + f(−x))

h(−x) =
1

2
(f(−x)− f(−(−x)))

= −1

2
(f(x)− f(−x))

Because f = g + h, f ∈ Veven + Vodd. So V ⊆ Veven + Vodd and this completes the proof
that Veven + Vodd = V .

Problem 4. Let K be any field, let V be a K-vector space, and let V1, V2 ⊆ V be K-subspaces
of V . Suppose V1 ∩ V2 = { 0V } and V1 + V2 = V . Show that for any v ∈ V , there exist unique
vectors v1 ∈ V1 and v2 ∈ V2 such that v = v1 + v2 in V.

Proof. Take any arbitary v ∈ V , since V1 + V2 = V , by definition of V1 + V2, there exists
v1 ∈ V1, v2 ∈ V2 such that v = v1 + v2.
Suppose ∃v′1 ∈ V1, v

′
2 ∈ V2 where v = v′1 + v′2.

v = v1 + v2 = v′1 + v′2

v1 − v′1 = v′2 − v2

Clearly LHS ∈ V1 and RHS ∈ V2 due to closure under vector addition. This implies LHS =
RHS = 0V since V1 ∩ V2 = { 0V }, thus we have v1 = v′1 and v2 = v′2, completing the uniqueness
proof.

Problem 5. Let K be any field, let V be a K-vector space, and let V1, V2 ⊆ V be K-subspaces
of V . Suppose the set-theoretic union V1 ∪ V2 is also a K-subspace of V . Show that one of the
subspaces V1 or V2 is contained in the other.
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Proof. V1 ∪ V2 is also a K-subspace of V , Suppose for a contradiction neither V1 nor V2 is
contained in the other. Means that V1 \ (V1 ∩V2) and V2 \ (V1 ∩V2) are both non-empty, namely
there exists v1 ∈ V1, v2 ∈ V2 where v1, v2 6∈ V1 ∩V2. Clearly v1, v2 ∈ V1 ∪V2. By closure property
of vector addition in a subspace, v1+v2 ∈ V1∪V2. Case v1+v2 ∈ V1, then v1+v2−v1 = v2 ∈ V1,
contradicting fact that v2 6∈ V1 ∩ V2. A symmetric argument shows that v1 + v2 cannot be in V2,
thus a contradiction.

Problem 6. Let K be an infinite field, let V be a vector space over K, and let V1, . . . Vn ⊂ V

be a finite list of proper K-subspaces over V. Show that V 6=
n⋃

j=1

Vj .

Proof. Let n ∈ N, V1, . . . , Vn ⊂ V be a finite list of proper K-subspaces over V . Suppose for a

contradiction that V =

n⋃
i=1

Vi. Trivially, n cannot be 0 or 1, result of Q5 implies n 6= 2, so n ≥ 3.

Using an algorithm, we can remove subspaces in the list as such,

1. For each x ∈ { 1, 2, . . . , n },

2. If
⋃
i 6=x

Vi = V , remove Vx from the list.

Since list is finite, algorithm halts. Therefore, without loss of generality, we can assume that for
any x ∈ { 1, . . . , n },

V =

n⋃
i=1

Vi 6=
⋃
i6=x

Vi, and

Vx\
⋃
i6=x

Vi 6= ∅.

Now take vectors
u ∈ V1 \

⋃
i 6=1

Vi and w ∈ V2 \
⋃
i6=2

Vi

For any a ∈ K \ { 0K }, define
va := u+ aw.

It is clear that va ∈ V =

n⋃
i=1

Vi. Suppose va ∈ V1, then a−1(va − u) = w ∈ V1, contradicting

w /∈ Vi for any i 6= 2. So va /∈ V1. Suppose va ∈ V2, then va − aw = u ∈ V2, contradicting u 6∈ Vi

for any i 6= 1. So va ∈
n⋃

i=3

Vi.

|K \ { 0K } | = ∞ while | {V3, . . . , Vn } | = n− 2. Since |K \ { 0K } | > | {V3, . . . , Vn } |, there does
not exist an injective map K \ { 0K } → {V3, . . . , Vn }. Now consider the following maps,

f : K \ { 0K } →
n⋃

i=3

Vi

a 7→ va = u+ aw;

g :

n⋃
i=3

Vi → {V3, . . . , Vn }

v 7→ Vj
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where Vj is the lowest-indexed subspace fulfilling v ∈ Vj .
We have g ◦ f : K \ { 0K } → {V3, . . . , Vn }, which as shown, cannot be injective. This means
that ∃a, b ∈ K \ { 0K } , Vj ∈ {V3, . . . , Vn } . a 6= b ∧ (g ◦ f)(a) = (g ◦ f)(b). So we can conclude
that

∃Vj ∈ {V3, . . . , Vn } , a, b ∈ K \ { 0K } . a 6= b and va, vb ∈ Vj .

Then va − vb ∈ Vj due to closure property of subspace,

va − vb = (u+ aw)− (u+ bw)

= (a− b)w

Since a 6= b, a− b 6= 0K , by closure property this implies (a− b)−1 · (a− b)w ∈ Vj =⇒ w ∈ Vj ,
contradicting fact that ∀i 6= 2. w /∈ Vi.
Therefore V cannot be a union of a finite list of proper K-subspaces.
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