MA2101S Homework 5

Qi Ji (A0167793L)

12th March 2018

1 Question 1

For any $n \in \mathbb{N}$, $p_n(X) := nX^{n+1} - (n+1)X^n + 1 \in \mathbb{Q}[X]$. Show that there exists $q_n \in \mathbb{Q}[X]$ such that $p_n(X) = (X-1)^2 q_n(X)$.

Proof. Consider $q_n(X):=\sum_{i=0}^{n-1}(i+1)X^i\in \mathbb{Q}[X].$ Now compute $(X-1)^2q_n(X)$,

$$\begin{split} (X-1)^2 q_n(X) &= (X^2-2X+1)q_n(X) \\ &= X^2 q_n(X) - 2Xq_n(X) + q_n(X) \\ &= X^2 \sum_{i=0}^{n-1} (i+1)X^i - 2X \sum_{i=0}^{n-1} (i+1)X^i + \sum_{i=0}^{n-1} (i+1)X^i \\ &= \sum_{i=0}^{n-1} (i+1)X^{i+2} - \sum_{i=0}^{n-1} 2(i+1)X^{i+1} + \sum_{i=0}^{n-1} (i+1)X^i \\ &= \sum_{i=2}^{n+1} (i-1)X^i - \sum_{i=1}^{n} 2iX^i + \sum_{i=0}^{n-1} (i+1)X^i \\ &= \sum_{i=1}^{n-1} (i-1)X^i - \sum_{i=1}^{n} 2iX^i + \sum_{i=0}^{n-1} (i+1)X^i \\ &= \sum_{i=1}^{n-1} (i-1)X^i - \sum_{i=1}^{n} 2iX^i + \sum_{i=0}^{n-1} (i+1)X^i + nX^{n+1} + (n-1)X^n \\ &= \sum_{i=1}^{n-1} (i-1)X^i - \sum_{i=1}^{n-1} 2iX^i + \sum_{i=0}^{n-1} (i+1)X^i + nX^{n+1} - (n+1)X^n \\ &= \sum_{i=1}^{n-1} [(i-1)X^i - 2iX^i + (i+1)X^i] + nX^{n+1} - (n+1)X^n + 1 \\ &= \sum_{i=1}^{n-1} 0 + nX^{n+1} - (n+1)X^n + 1 \\ &= nX^{n+1} - (n+1)X^n + 1 = p_n \end{split}$$

Therefore $p_n(\boldsymbol{X})$ is divisible by $(\boldsymbol{X}-1)^2.$

Let K be a field, and let $a, b \in K$ with $a \neq 0$. Show that $(aX + b)^0, (aX + b)^1, (aX + b)^2, ...$ form a basis for K[X].

Linear independence. *Proof.* Consider any finite subset of naturals $S \subseteq \mathbb{N}$. The claim is that $\{(aX+b)^s\}_{s\in S}$ – an arbitrary finite subset of $\{(aX+b)^i\}_{i\in \mathbb{N}}$, is linearly independent. To prove linear independence, proceed by induction on |S|.

Base cases. If |S| = 0 or |S| = 1, linear independence is trivial.

Induction hypothesis. Suppose for any $T \subseteq \mathbb{N}$ with |T| = n - 1, $\{ (aX + b)^t \}_{t \in T}$ is linearly independent.

Now consider $S \subseteq \mathbb{N}$ with |S| = n. Let $\omega \in S$ be the largest element in S, that is for any $s \in S$, $s \leq \omega$. Because S is finite and non-empty, ω actually exists. Consider this equation,

$$\sum_{s\in S}c_s(aX+b)^s=0\qquad \text{ in }\mathbb{Q}[X]$$

where $(c_s)_{s\in S} \in K$ are coefficients indexed by S. Comparing the coefficient of X^{ω} , $c_{\omega}a^{\omega} = 0$, then because $a^{\omega} \neq 0$, $c_{\omega} = 0$. Then the equation reduces to,

$$\sum_{s\in S\smallsetminus\{\,\omega\,\}}c_s(aX+b)^s=0\qquad \text{in }\mathbb{Q}[X]$$

then from induction hypothesis, because $|S \setminus \{\omega\}| = n - 1$, using linear independence, all the coefficients $(c_s)_{s \in S \setminus \{\omega\}}$ are zero, together with our earlier conclusion that $c_{\omega} = 0$, completes the proof that $\{(aX + b)^s\}_{s \in S}$ is linearly independent.

Hence any finite subset of $\{ (aX + b)^0, (aX + b)^1, (aX + b)^2, ... \}$ is linearly independent.

Spanning. *Proof.* To show that $\{ (aX + b)^i \}_{i \in \mathbb{N}}$ spans K[X], proceed by induction on the degree of the polynomial that lies in K[X].

Base cases. Trivial to see that zero polynomial is spanned. Since $(aX + b)^0 = 1$, all degree 0 polynomials are spanned too.

Induction hypothesis. Suppose any polynomial of degree strictly less than n is spanned by $\{(aX+b)^i\}_{i\in\mathbb{N}}$.

Let $f \in K[X]$ with $\deg(f) = n$, so $f = \sum_{i=0}^{n} f_i X^i$, where $f_0, \dots, f_n \in K$ are coefficients with $f_n \neq 0$. From binomial theorem,

$$(aX+b)^n = \sum_{r=0}^n \binom{n}{r} (aX)^r b^{n-r}$$
$$= a^n X^n + \sum_{r=0}^{n-1} \binom{n}{r} (aX)^r b^{n-r}$$

as $a^n \neq 0$, proceed to compute $f - \frac{f_n}{a^n} (aX + b)^n$,

$$\begin{split} f - \frac{f_n}{a^n} (aX + b)^n &= f_n X^n + \sum_{i=0}^{n-1} f_i X^i - \frac{f_n}{a^n} \left(a^n X^n + \sum_{r=0}^{n-1} \binom{n}{r} (aX)^r b^{n-r} \right) \\ &= f_n X^n + \sum_{i=0}^{n-1} f_i X^i - f_n X^n - \frac{f_n}{a^n} \sum_{r=0}^{n-1} \binom{n}{r} a^r X^r b^{n-r} \\ &= \sum_{r=0}^{n-1} \left(f_r X^r - \frac{f_n}{a^n} \binom{n}{r} a^r b^{n-r} X^r \right) \\ &= \sum_{r=0}^{n-1} \left(f_r - \frac{f_n}{a^n} \binom{n}{r} a^r b^{n-r} \right) X^r \end{split}$$

This means $f - \frac{f_n}{a^n}(aX + b)^n$ is a polynomial with degree at most n - 1, so by induction hypothesis, it is spanned by $\{ (aX + b)^i \}_{i \in \mathbb{N}}$. So there exists a finite subset $S \subseteq \mathbb{N}$, and coefficients $(c_s)_{s \in S} \in K$ indexed by S such that

$$f - \frac{f_n}{a^n} (aX + b)^n = \sum_{s \in S} c_s (aX + b)^s,$$

which gives

$$f=\sum_{s\in S}c_s(aX+b)^s+\frac{f_n}{a^n}(aX+b)^n.$$

By strong induction, any polynomial is spanned by $\{ (aX+b)^i \}_{i \in \mathbb{N}}$. Therefore $\{ (aX+b)^i \}_{i \in \mathbb{N}}$ forms a basis for K[X].

Let *K* be a field, and let $h \in K[X]$ be a polynomial with $deg(h) \ge 1$. Consider the linear endormorphism Φ of K[X] given by

$$\Phi: K[X] \to K[X], \qquad f \mapsto f(h).$$

(a) Show that Φ is injective.

(b) Show that Φ is an isomorphism if and only if deg(h) = 1.

Proposition. For any nonzero polynomials $f, g \in K[X]$, $\deg(f(g)) = \deg(f) \deg(g)$.

Proof. Let $f_0, \ldots, f_m \in K$ such that $f = \sum_{i=0}^m f_i X^i$ and $g_0, \ldots, g_n \in K$ such that $g = \sum_{j=0}^n g_j X^j$, with $f_m \neq 0$ and $g_n \neq 0$, where $m = \deg(f), n = \deg(g), m, m \ge 0$, then

$$\begin{split} f(g) &= \sum_{i=0}^m f_i g^i \\ &= \sum_{i=0}^m f_i \left(\sum_{j=0}^n g_j X^j \right)^i \end{split}$$

As $\deg(g^i) = i \cdot \deg(g)$ for any $i \in \mathbb{N}$, $\deg(f(g)) \leq m \cdot \deg(g)$. Also note that in f(g), the coefficient of X^{mn} is $f_m g_n^m$, which is nonzero, therefore $\deg(f(g)) = mn = \deg(f) \deg(g)$.

- (a) *Proof.* To show injectivity, proceed to show that Φ has a trivial kernel. Suppose for a contradiction Φ has a non-trivial kernel, that is there exists $f \in K[X]$, with $\deg(f) \ge 0$, and $\Phi(f) = 0$. This means $\deg(\Phi(f)) = \deg(0) = -\infty$, but because both f, h are nonzero polynomials, by proposition above, $\deg(f(h)) = \deg(f) \deg(h) \ge 0$ which is a contradiction. \Box
- (b) *Proof.* If deg(h) = 1, from Question 2, since h = aX + b where $a, b \in K$ with $a \neq 0$, the set $\{h^i\}_{i\in\mathbb{N}}$ forms a basis of K[X]. Evaluating Φ on the standard basis $\{X^i\}_{i\in\mathbb{N}}$ for K[X] gives that for any $i \in \mathbb{N}$, $\Phi(X^i) = h^i$. Since Φ sends basis to basis, it is an isomorphism.

Conversely suppose $\deg(h) \ge 2$, the claim is that $X \notin \operatorname{Im}(\Phi)$. Consider the degree of the polynomial (point) we evaluate Φ at, for any $f \in K[X]$,

- Case $\deg(f) = -\infty$, $\Phi(f) = 0$, and $\deg(\Phi(f)) = -\infty$,
- Case $\deg(f) = 0$, $\Phi(f) = f$ is degree 0,
- Case $\deg(f) \ge 1$, $\Phi(f) = f(h)$ has degree $\deg(f) \deg(h) \ge 2$.

This means that no degree 1 polynomial lies in $Im(\Phi)$, therefore Φ is not an isomorphism. \Box

Let K be a field of characteristic 0. Consider the linear endormorphism S of K[X] given by

$$S: K[X] \to K[X], \qquad \sum_{n=0}^d a_n X^n \mapsto \sum_{n=0}^d \frac{a_n}{n+1} X^{n+1}.$$

Let $V \subseteq K[X]$ be a non-zero subspace which is stable under S. Show that V is not finite-dimensional.

Proof. Suppose for a contradiction that $V \subseteq K[X]$ is non-zero, stable under S and is finite-dimensional, then V has a finite basis \mathcal{B} . Note that since V is not the zero subspace, \mathcal{B} is non-empty. Consider $\deg(\mathcal{B}) \subseteq \mathbb{N}$, a finite and non-empty subset of natural numbers. Let $\omega \in \deg(\mathcal{B})$ be the largest element, that is, for any $d \in \deg(\mathcal{B})$, $d \leq \omega$. This means that there exists $z \in \mathcal{B}$ such that $\deg(z) = \omega$, and for any $b \in \mathcal{B}$, $\deg(b) \leq \deg(z)$.

As linear combination of polynomials do not increase the degree, for any $v \in \operatorname{span}(\mathcal{B}) = V$, $\operatorname{deg}(v) \leq \omega$. But now, consider S(z). Let $z_0, \ldots, z_\omega \in K$ with $z_\omega \neq 0$ such that $z = \sum_{i=0}^{\omega} z_i X^i$, then

$$\begin{split} S(z) &= S\left(\sum_{i=0}^{\omega} z_i X^i\right) \\ &= \sum_{i=0}^{\omega} \frac{z_i}{i+1} X^{i+1} \end{split}$$

which has degree $\omega + 1$, as $\frac{z_{\omega}}{\omega+1} \neq 0$. Then from our earlier conclusion that any $v \in V$ has degree less than or equal to ω , we have $z \in V$, but $S(z) \notin V$, which contradicts fact that V is stable under S. \Box

Let K be a field of characteristic 0. Consider the linear endomorphism D of K[X] given by

$$D: K[X] \to K[X], \qquad \sum_{n=0}^{d} a_n X^n \mapsto \sum_{n=1}^{d} n a_n X^{n-1}.$$

Let $V \subseteq K[X]$ be a finite dimensional subspace. Show that D is nilpotent on V, i.e. there exists $m \in \mathbb{N}$ such that for any $f \in V$, one has $D^m(f) = 0$.

Claim. For any nonzero $f \in K[X]$, $D^{\deg(f)+1}(f) = 0$.

Proof (of claim). Proceed by induction on $\deg(f)$, case $\deg(f) = 0$, it is clear that $D^1(0) = 0$. (There are no terms in a sum from 1 to 0.) Suppose for any $g \in K[X]$ with $\deg(g) = n - 1$, $D^n(g) = 0$.

Consider $f \in K[X]$ with $\deg(f) = n$, so $f_0, \dots, f_n \in K$ with $f_n \neq 0$ such that $f = \sum_{i=0}^n f_i X_i$, then by induction hypothesis,

$$\begin{split} D^{n+1}(f) &= D^n \left(D(f) \right) \\ &= D^n \left(D \left(\sum_{i=0}^n f_i X^i \right) \right) \\ &= D^n \left(\sum_{i=1}^n i f_i X^{i-1} \right) \\ &= 0 \end{split}$$

Therefore by induction, for any nonzero $f \in K[X]$, $D^{\deg(f)+1}(f) = 0$. \Box An immediate corollary is that for any $f \in K[X]$, for any $m \in \mathbb{N}$, where $m > \deg(f)$, $D^m(f) = 0$.

Proof (of Q5). V is finite dimensional, so *V* has a finite basis \mathcal{B} . In the case that *V* is the zero subspace, D(0) = 0 so *D* is nilpotent. For cases where *V* is a non-zero subspace of K[X], \mathcal{B} is non-empty. Consider $\deg(\mathcal{B}) \subseteq \mathbb{N}$, which is a finite and non-empty subset of natural numbers. It has the largest element ω , where for any $d \in \deg(\mathcal{B})$, $d \leq \omega$. This means that there exists $z \in \mathcal{B}$ such that $\deg(z) = \omega$, and for any $b \in \mathcal{B}$, $\deg(b) \leq \deg(z)$.

As linear combination of polynomials do not increase the degree, for any $v \in \operatorname{span}(\mathcal{B}) = V$, $\deg(v) \leq \omega$. For $0 \in V$, $D^{\omega+1}(0) = 0$ is trivial. For any nonzero $v \in V$, as $\omega + 1 > \deg(v)$, by claim, $D^{\omega+1}(v) = 0$. Therefore D is nilpotent.

Let K be a field. For each $t \in K$, "evaluation at t" gives a linear functional $eval_t \in K[X]^{\vee}$ on the K-vector space K[X]:

$$\operatorname{eval}_t : K[X] \to K, \qquad f \mapsto f(t),$$

which has the property that for any $f, g \in K[X]$, one has

$$eval(fg) = eval(f) eval(g)$$
 in K.

Show that for any linear functional $\varphi \in K[X]^{\vee}$ with property that for any $f, g \in K[X]$, one has

$$\varphi(fg) = \varphi(f)\varphi(g)$$
 in K

then either $\varphi = 0$ in $K[X]^{\vee}$ or there exists $t \in K$ such that $\varphi = \operatorname{eval}_t$ in $K[X]^{\vee}$.

Proof. Let $\varphi \in K[X]^{\vee}$ be any multiplicative linear functional. By multiplicative property, $\varphi(1) = \varphi(1) \cdot \varphi(1)$, then $\varphi(1) = 0$ or $\varphi(1) = 1$.

 $\mathsf{Case}\,\varphi(1)=0, \mathsf{then}\,\mathsf{for}\,\mathsf{any}\,f\in K[X], \varphi(f)=\varphi(1\cdot f)=\varphi(1)\cdot\varphi(f)=0, \mathsf{so}\,\varphi\,\mathsf{is}\,\mathsf{the}\,\mathsf{zero}\,\mathsf{functional}.$

Case φ nonzero and $\varphi(1) = 1$, for any $f \in K[X]$, let $f_0, \dots, f_d \in K$ such that $f = \sum_{i=0}^d f_i X^i$, where $d = \deg(f)$, then by linearity and multiplicative property,

$$\begin{split} \varphi(f) &= \varphi\left(\sum_{i=0}^d f_i X^i\right) \\ &= f_0 \varphi(1) + \sum_{i=1}^d f_i \varphi(X^i) \\ &= f_0 + \sum_{i=1}^d f_i \varphi(X)^i \end{split}$$

define $t := \varphi(X) \in K$, then

$$\begin{split} \operatorname{eval}_t(f) &= f(t) \\ &= \sum_{i=0}^d f_i t^i \\ &= f_0 + \sum_{i=1}^d f_i t^i \end{split}$$

Since f was arbitrary, we see that by setting $t = \varphi(X) \in K$, $\varphi = \operatorname{eval}_t$.