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1 Question 1

It is trivial that (i) ⟹ (ii). �

For (ii) ⟹ (i), suppose (ii), let ℬ = { 𝑣1, … , 𝑣𝑛 } be a basis for 𝑉. Clearly these vectors are non-
zero, so they are eigenvectors of 𝜑. Then there exists eigenvalues 𝜆1, … , 𝜆𝑛 ∈ 𝐾 such that for any
𝑖 ∈ { 1, … , 𝑛 }, 𝜑(𝑣𝑖) = 𝜆𝑖𝑣𝑖. As vectors in ℬ form a basis, 𝑣1 + ⋯ + 𝑣𝑛 ≠ 0, then there exist an
eigenvalue 𝑐 ∈ 𝐾 such that

𝜑(𝑣1 + ⋯ + 𝑣𝑛) = 𝑐(𝑣1 + ⋯ + 𝑣𝑛)

= 𝑐 𝑣1 + ⋯ + 𝑐 𝑣𝑛

but by linearity,

𝜑(𝑣1 + ⋯ + 𝑣𝑛) = 𝜆1 𝑣1 + ⋯ + 𝜆𝑛 𝑣𝑛

Then by uniqueness of basis coefficients, 𝑐 = 𝜆1 = ⋯ = 𝜆𝑛, then it becomes clear that 𝜑 = 𝑐 ⋅ id𝑉.
�

2 Question 2

(a) False.

Counter-example. Set 𝐾 = ℝ, 𝑉 = ℝ2, taking all matrices with respect to standard basis, set

𝐵 = (
0 0
0 1

) 𝐴 = (
0 1
1 0

) 𝑣 = (
1
0
)

1



MA2101S Homework 7 26th March 2018

We can now compute that 𝐴𝐵𝑣 = 𝐴0 = 0, which means 𝑣 is an eigenvector of 𝐴𝐵 with

eigenvalue 0, but 𝐵𝐴𝑣 = 𝐵 (
0
1
) = (

0
1
) which is not a scalar multiple of 𝑣. �

(b) True.

Proof. Let 𝜆 ∈ 𝐾 be an eigenvalue of 𝐴𝐵, then ∃𝑣 ∈ 𝑉 ∖ { 0𝑉 } such that

𝐴𝐵 𝑣 = 𝜆 𝑣.

• Case 𝜆 = 0, then 𝐴𝐵 is singular ⟹ 𝐵𝐴 is not invertible too, which lets us conclude that
𝜆 = 0 is also an eigenvalue of 𝐵𝐴.

• Case 𝜆 ≠ 0, then 𝐵𝑣 ≠ 0𝑉, then pre-multiplying by 𝐵 gives

𝐵𝐴 (𝐵𝑣) = 𝜆 (𝐵𝑣)

which shows that 𝜆 is also an eigenvalue of 𝐵𝐴 with eigenvector 𝐵𝑣. �

3 Question 3

(a) True.

Claim. Let 𝑣 be an eigenvector of 𝜑 corresponding to eigenvalue 𝜆. For any 𝑛 ∈ ℕ, 𝜑𝑛 𝑣 = 𝜆𝑛 𝑣.

Proof (of Claim). It is given that 𝜑 𝑣 = 𝜆 𝑣. Suppose 𝜑𝑛−1 𝑣 = 𝜆𝑛−1𝑣, then 𝜑𝑛 𝑣 = 𝜑𝑛−1(𝜑 𝑣) =
𝜑𝑛−1(𝜆 𝑣) = 𝜆 𝜑𝑛−1 𝑣 by linearity. Applying induction hypothesis gives us the conclusion that
𝜑𝑛 𝑣 = 𝜆𝑛 𝑣. �

Proof (of 3a). Let 𝜆 ∈ ℂ be an eigenvalue of 𝜑, so ∃𝑣 ∈ 𝑉 ∖ { 0 } . 𝜑 𝑣 = 𝜆 𝑣. Let 𝑓(𝑇 ) ∈ ℂ[𝑇 ] be
given by

𝑓(𝑇 ) =
deg(𝑓)

∑
𝑖=0

𝑓𝑖 𝑇 𝑖.
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Evaluating 𝑓 at 𝜑 gives us an endomorphism,

𝑓(𝜑) =
deg(𝑓)

∑
𝑖=0

𝑓𝑖 𝜑𝑖 in End(𝑉 )

𝑓(𝜑) 𝑣 =
deg(𝑓)

∑
𝑖=0

𝑓𝑖 𝜑𝑖 𝑣 in 𝑉

=
deg(𝑓)

∑
𝑖=0

𝑓𝑖 𝜆𝑖 𝑣 by Claim

= 𝑓(𝜆) 𝑣

this shows that 𝑓(𝜆) ∈ ℂ is an eigenvalue of 𝑓(𝜑). �

(b) True.

Proof. Let 𝑎 be an eigenvalue of 𝑓(𝜑), so

∃𝑣 ∈ 𝑉 ∖ { 0 } . (𝑓(𝜑) − 𝑎𝐼) 𝑣 = 0.

Consider the polynomial 𝑓(𝑇 ) − 𝑎 ∈ ℂ[𝑇 ], by Fundamental Theorem of Algebra, there exists
𝜆1, … , 𝜆𝑘, 𝑐 ∈ ℂ such that

𝑓(𝑇 ) − 𝑎 = 𝑐 ⋅
𝑘

∏
𝑖=1

(𝑇 − 𝜆𝑖) in ℂ[𝑇 ] (†)

evaluating at 𝜑 gives

𝑓(𝜑) − 𝑎𝐼 = 𝑐 ⋅
𝑘

∏
𝑖=1

(𝜑 − 𝜆𝑖𝐼) in Endℂ(𝑉 )

As it is known that LHS is singular, by multiplicativity of determinant, RHS is necessarily singular,
so (at least) one of 𝜑 − 𝜆𝑖𝐼 is singular, so

∃𝜆 ∈ { 𝜆1, … , 𝜆𝑘 } . det(𝜑 − 𝜆𝐼) = 0

which implies that 𝜆 is an eigenvalue of 𝜑, then evaluating (†) at 𝜆 gives

𝑓(𝜆) − 𝑎 = 𝑐 ⋅ 0 ⟹ 𝑎 = 𝑓(𝜆). �
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4 Question 4

(a) True.

Proof. Let 𝑓(𝑇 ) ∈ ℂ[𝑇 ] be given by

𝑓(𝑇 ) ∶= 𝑇 𝑘 − 1.

then 𝑓(𝐴) = 𝐴𝑘 − 1𝑛 = 0 in 𝕄𝑛(ℂ), so 𝑓 annihilates 𝐴. We see that 𝑓 has the following
factorisation in ℂ[𝑇 ]

𝑇 𝑘 − 1 =
𝑘−1
∏
𝑗=0

(𝑇 − 𝑒𝑗⋅2𝜋𝑖/𝑘)

Let 𝑚(𝑇 ) ∈ ℂ[𝑇 ] be the minimal polynomial of 𝐴, then it is necessary that 𝑚(𝑇 ) ∣ 𝑓(𝑇 ). As
𝑓(𝑇 ) splits completely into distinct linear factors, 𝑚(𝑇 ) also has this property. This means that
𝐴 is diagonalisable. �

(b) False.

Counter-example. Consider 𝐴 ∶= (
0 1
0 0

) ∈ 𝕄2(ℂ). 𝐴2 = 0 is certainly diagonalisable, but 𝐴 is

already in Jordan canonical form and is not diagonalisable. �

5 Question 5

Definition. For any 𝑧 ∈ ℂ that is algebraic over ℚ, let the minimal polynomial of 𝑧 refer to the
(necessarily unique) monic generator of the ideal of polynomials over ℚ which annihilates 𝑧. (ie. The
lowest degree monic polynomial with rational coefficients which has 𝑧 as a root.)

Lemma. Let 𝑓 ∈ ℚ[𝑇 ], let 𝑧 ∈ ℂ be algebraic over ℚ with 𝑓(𝑧) = 0, then 𝑚𝑧 divides 𝑓 in ℚ[𝑇 ].

Proof (Lemma). First apply division algorithm in ℚ[𝑇 ], so ∃𝑞, 𝑟 ∈ ℚ[𝑇 ] such that

𝑓(𝑇 ) = 𝑞(𝑇 ) ⋅ 𝑚𝑧(𝑇 ) + 𝑟(𝑇 ) in ℚ[𝑇 ],

with deg(𝑟) < deg(𝑚𝑧). Then evaluation at 𝑧 gives

0 = 𝑞(𝑧) ⋅ 0 + 𝑟(𝑧) in ℂ.

Byminimality of 𝑚𝑧, 𝑟 is necessarily the zero polynomial. Hence 𝑚𝑧 ∣ 𝑓. �

Proof (Q5). Let 𝑛 = dimℚ 𝑉. When 𝑛 = 0, the conclusion trivially holds, so suppose 𝑛 ≠ 0. Fix
any ordered basis, and let 𝐴 ∈ 𝕄𝑛(ℚ) be the matrix representation of 𝜑. Let 𝑓(𝑇 ) ∈ ℚ[𝑇 ] be the
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characteristic polynomial of 𝐴. We know that deg(𝑓) = 𝑛.

The polynomial 𝑇 𝑝 − 1 can also be factorised in ℚ[𝑇 ] like so

𝑇 𝑝 − 1 = (𝑇 − 1) (𝑇 𝑝−1 + ⋯ + 𝑇 + 1) in ℚ[𝑇 ]

Let 𝑚(𝑇 ) ∈ ℚ[𝑇 ] be given by 𝑚(𝑇 ) ∶= 𝑇 𝑝−1 + ⋯ + 𝑇 + 1. Evaluation at 𝜑 gives

𝜑𝑝 − id𝑉 = 0 = (𝜑 − id𝑉) 𝑚(𝜑) in End(𝑉 )

as (𝜑 − id𝑉)𝑣 = 0 implies 𝑣 = 0𝑉, we have 𝑚(𝜑) = 0 in End(𝑉 ). So 𝑚 annihilates 𝜑, and similarly
also annihilates its matrix representation 𝐴.

Now consider the field of complex numbers, and the corresponding linear map ℂ𝑛 → ℂ𝑛 that 𝐴
characterises. Because 𝑚 annihilates 𝐴, for any of its eigenvalues 𝜆 ∈ ℂ, 𝑚(𝜆) = 0 (corollary of 3a).
As it is given that 𝑚 is irreducible over ℚ, 𝑚 will be the minimal polynomial of 𝜆.

Lastly, proceed to repeatedly apply lemma to obtain the result that

𝑓(𝑇 ) = 𝑚(𝑇 )𝑘 ⋅ 𝑙 for some 𝑘 ∈ ℕ ∖ { 0 } , 𝑙 ∈ ℚ ∖ { 0 } .

Choose any root 𝜆 ∈ ℂ of 𝑓(𝑇 ), then because 𝜆 is an eigenvalue of𝐴, by Lemmawe have𝑚 ∣ 𝑓 inℚ[𝑇 ],
so ∃𝑞 ∈ ℚ[𝑇 ]. 𝑓 = 𝑚 ⋅ 𝑞.

1. Case 𝑞 has no roots in ℂ, by our earlier assumption that 𝑓 nonzero, 𝑞 is a constant polynomial.
2. Case 𝑞 has a root, say 𝑧 ∈ ℂ, then 𝑓(𝑧) = 0, whichmeans 𝑧 is an eigenvalue of𝐴. Using the same

argument, we obtain that 𝑧 is also a root of 𝑚(𝑇 ) and by Lemma, 𝑚 ∣ 𝑞. Then ∃𝑞′(𝑇 ) ∈ ℚ[𝑇 ]
such that 𝑓 = 𝑚2 ⋅ 𝑞′. Repeat this process until 𝑞𝑘(𝑇 ) is degree 0, andwe obtain the result stated
earlier.

Then taking degrees,

deg(𝑓) = 𝑘 deg(𝑚) ⟹ 𝑛 = 𝑘(𝑝 − 1) for some 𝑘 ∈ ℕ ∖ { 0 } ,

which shows 𝑝 − 1 ∣ dimℚ 𝑉. �

6 Question 6

Proof. Rewriting the recurrence equation in matrix form gives us that for any 𝑛 ≥ 1,

(
𝑃𝑛+1
𝑃𝑛

) = (
2 1
1 0

) (
𝑃𝑛

𝑃𝑛−1
)
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recursive expansion gives that for any 𝑛 ≥ 0,

(
𝑃𝑛+1
𝑃𝑛

) = (
2 1
1 0

)
𝑛

(
𝑃1
𝑃0

)

= (
2 1
1 0

)
𝑛

(
1
0
)

Finding a closed form formula for Pell numbers reduces to diagonalising thematrix𝐴 ∶= (
2 1
1 0

). Let

𝑓(𝑡) ∈ ℝ[𝑡] be characteristic polynomial of 𝐴,

𝑓(𝑡) = (2 − 𝑡)(−𝑡) − 1

= 𝑡2 − 2𝑡 − 1

Roots of 𝑓 are 2±
√

8
2 = 1±

√
2. Let𝛼 ∶= 1+

√
2 and𝛽 ∶= 1−

√
2, note that they can be characterised as

solutions of the equation 𝑡2 = 2𝑡+1. Using this property, it becomes clear that(
𝛼
1

) is an eigenvector

(with eigenvalue 𝛼), because

(
2 1
1 0

) (
𝛼
1

) = (
2𝛼 + 1

𝛼
)

= (
𝛼2

𝛼
)

= 𝛼 (
𝛼
1

)

As 𝛽 has the same characterising property, the same computation will also show that (
𝛽
1
) is an

eigenvector for eigenvalue 𝛽. Since the eigenspace has enough dimensions, 𝐴 is diagonalisable, in
fact

𝐴 = (
𝛼 𝛽
1 1

) (
𝛼 0
0 𝛽

) (
𝛼 𝛽
1 1

)
−1

𝐴𝑛 = (
𝛼 𝛽
1 1

) (
𝛼 0
0 𝛽

)
𝑛

(
𝛼 𝛽
1 1

)
−1

= 1
𝛼 − 𝛽

(
𝛼 𝛽
1 1

) (
𝛼𝑛 0
0 𝛽𝑛) (

1 −𝛽
−1 𝛼

)
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substituting that into our original expression for (
𝑃𝑛+1
𝑃𝑛

), we can derive the closed form,

(
𝑃𝑛+1
𝑃𝑛

) = 𝐴𝑛 (
1
0
)

= 1
𝛼 − 𝛽

(
𝛼 𝛽
1 1

) (
𝛼𝑛 0
0 𝛽𝑛) (

1 −𝛽
−1 𝛼

) (
1
0
)

= 1
𝛼 − 𝛽

(
𝛼𝑛+1 𝛽𝑛+1

𝛼𝑛 𝛽𝑛 ) (
1

−1
)

= 1
𝛼 − 𝛽

(
𝛼𝑛+1 − 𝛽𝑛+1

𝛼𝑛 − 𝛽𝑛 )

then we have

𝑃𝑛 = 1
𝛼 − 𝛽

(𝛼𝑛 − 𝛽𝑛)

= 1
2
√

2
⋅ 𝛼𝑛 − 1

2
√

2
⋅ 𝛽𝑛

and 𝛼 = 1 +
√

2, 𝛽 = 1 −
√

2, 𝑐 = 1
2

√
2 , 𝑑 = − 1

2
√

2 can all be verified to be real numbers. �
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