MA2104 Reference

Qi Ji

May 2018

0.1 Important notions

Functions. RnR
send points to numbers (scalars)
Curves. IRn
send numbers to points (in space)
Vector fields. RnRn
sends points to vectors (in the same dimension)

1 Baby linear algebra and geometry

1.1 Babby’s first vectors

Read compab,projab leftwards as component/projection of b on a. compab=ab

1.2 (Translated) subspaces

Any hyperspace can be described by a normal vector \mathbf{n}. Equation of any hyperspace can be given by \mathbf{r}\cdot\mathbf{n} = 0, translation gives \mathbf{n}\cdot\mathbf{r} = \mathbf{n}\cdot\mathbf{r}_0 where \mathbf{r}_0 is the position vector of any given point in the hyperspace.

1.3 Vector functions

2 Surfaces & Multivariable functions

Cylinder.
Exists plane \Pi such that all planes parallel to \Pi intersect S in the same curve. (Common cylinders are those with a free variable.)
Scaling denominators are omitted. If they are negative for linear terms, like z/-c, mentally flip everything.
Quadric surface Shape Properties
x^2 + y^2 = z Elliptic paraboloid Opens up on the axis of the linear variable
x^2 - y^2 = z Hyperbolic paraboloid “Saddle” opens up the direction of the linear variable
x^2 + y^2 + z^2=1 Ellipsoid Nothing special
x^2 + y^2 - z^2=0 (Elliptic) cone Opens up on the axis with negative coefficient
x^2 + y^2 - z^2=1 1-sheet hyperboloid \uparrow same
x^2 + y^2 - z^2=-1 2-sheet hyperboloid \uparrow same

If all else fails, fix 1 variable and trace the other two.

3 Limits & Continuity

4 Differential Calculus

4.1 Partial derivatives

Suppose f: \mathbb{R}^n \to \mathbb{R}, let (e_i)_{i=1,2,\dots,n} be standard basis for \mathbb{R}^n. D_i f = \frac{\partial f}{\partial e_i} =_{\text{def}} \lim_{h\to 0} \frac{f(\mathbf{v} + he_i) - f(\mathbf{v})}{h}. When differentiating normally is too hard use \uparrow.

Clairaut’s Theorem. Partial differentiation operators commute. \forall i,j.~ D_i D_j = D_j D_i.

4.2 Differentiability and linear approximation

f: \mathbb{R}^n \to \mathbb{R} is differentiable at \mathbf{a} iff

On differentiability, only these implications hold, at a point \mathbf{x}\in \mathbb{R}^n,

  1. all partial derivatives continuous at \mathbf{x} \implies f differentiable at \mathbf{x},
  2. f differentiable \implies f continuous,
  3. f differentiable \implies all partial derivatives exist.

Suppose f is differentiable at \mathbf{a}, then for a small vector \mathbf{h}, f(\mathbf{a} + \mathbf{h}) \approx f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \mathbf{h}

4.3 Chain rule

f is a differentiable function, \mathbf{r}(t) is a differentiable curve. Then f(\mathbf{r}(t)) is differentiable and \frac{df(\mathbf{r}(t))}{dt} = \nabla f(\mathbf{r}(t))\cdot \mathbf{r}'(t), or in terms of coordinates, if \mathbf{r}(t) = \left\langle r_1(t),\dots,r_n(t) \right\rangle, \frac{df(\mathbf{r}(t))}{dt} = \frac{\partial f}{\partial r_1}\frac{d r_1}{d t} + \dots + \frac{\partial f}{\partial r_n}\frac{d r_n}{d t}.

In general, suppose f(\mathbf{x}(\mathbf{t})) is differentiable and \mathbf{x}(\mathbf{t}) = \left\langle x_1(\mathbf{t}),\dots,x_n(\mathbf{t}) \right\rangle, then \frac{\partial f}{\partial t_i} = \frac{\partial f}{\partial x_1}\frac{\partial x_1}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n}\frac{\partial x_n}{\partial t_i}. (remember as adding all paths traced from f to t_i.)

Corollary.
\nabla f =_{\text{def}} \left\langle D_1f , \dots , D_nf \right\rangle is always normal to the level curve/surface of f.
Implicit differentiation.
Suppose F(x,y,z) = 0 implicitly defines z = \phi(x), then by chain rule (assuming y independent) \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0.
Tangent Plane shortcut.
For f: \mathbb{R}^2\to \mathbb{R}, vector normal to tangent plane at (a,b) is given by \left\langle 1,0,f_x(a,b) \right\rangle \times \left\langle 0,1,f_y(a,b) \right\rangle = \left\langle -f_x(a,b),-f_y(a,b), 1 \right\rangle.

4.4 Directional derivatives

Given a unit vector \mathbf{u}, the derivative of f in the direction of \mathbf{u} is D_{\mathbf{u}} f =_\text{def} \nabla f \cdot \mathbf{u}.

Min/max rate of change of f at a point P,

4.5 Extrema

(Local min/max was not defined rigorously so I assume no1cur.)

Critical point.
P is a critical point of f if \nabla f(P) = \mathbf{0}.
Boundary point.
P is a boundary point of S if every open ball centered at P contains a point in S and a point not in S.
Closed set.
S is closed if it contains all boundary points.
Bounded.
There exists b such that for any point X in set, we have \left\lVert X \right\rVert \leq b.

Extreme Value Theorem. For a function f defined on a closed and bounded set S, f has global maximum and minimum in S.

Closed Interval Method for f:D\to \mathbb{R}, where D is closed and bounded.

  1. Find values of f at all critical points in D.
  2. Trace values of f at each boundary of D.
  3. min/max

4.5.1 Lagrange Multipliers

Suppose f,g are differentiable functions where \nabla g \ne \mathbf{0}. Optimisation: find min/max f (objective) given g(x,y) = k (constraint).

  1. solve \nabla f(x,y) = \lambda \nabla g(x,y), where \lambda is Lagrange Multiplier to be determined.
  2. Evaluate f at all points found, proceed to min/max.

Higher-dimensional cases are analogous.

5 Integral Calculus

5.1 Additive property of integrals

Let \mathcal{F} = \left\{\, R_i \,\right\}_{i\in I} be a finite family of sets (regions, curves, surfaces) such that R_i\cap R_j is of measure 0 whenever i\ne j, then \int_{\mathcal{F}} = \sum_{i\in I} \int_{R_i} (obvious from Riemann sum definition).

5.2 Double Integrals

If domain of f can be represented as D = \left\{\, (x,y): a\leq x\leq b, h_1(x)\leq y\leq h_2(x) \,\right\}, then \iint_D f(x,y)\ dA = \int_a^b \int_{h_1(x)}^{h_2(x)} f(x,y)\ dy\ dx.

5.2.1 Polar Regions

If the polar region of integral is given as D = \left\{\, (r,\theta): 0\leq a\leq r\leq b, h_1(r)\leq \theta\leq h_2(r) \,\right\} (angle depends on radius), then \iint_D f(r,\theta)\ dA = \int_a^b \int_{h_1(r)}^{h_2(r)} f(r, \theta)r \ d\theta\ dr. On the other hand when radius depends on angle, say D = \left\{\, (r,\theta): \alpha\leq\theta\leq\beta, h_1(\theta)\leq r\leq h_2(\theta) \,\right\}, \iint_D f(r,\theta)\ dA = \int_\alpha^\beta \int_{h_1(\theta)}^{h_2(\theta)} f(r, \theta)r \ dr\ d\theta.

5.3 Triple Integrals

Synopsis. Reduce the triple integral into a double integral by projecting the domain of integration on a coordinate plane.

Suppose D\in\mathbb{R}^2 such that E = \left\{\, (x,y,z): (x,y)\in D, h_1(x,y) \leq z \leq h_2(x,y) \,\right\}, then an integral over E can be reduced to a double integral by doing \iiint_E f(x,y,z)\ dV = \iint_D\left[ \int_{h_1(x,y)}^{h_2(x,y)} f(x,y,z)\ dz\right]\ dA.

5.3.1 Cylindrical coordinates

Nothing much, use \uparrow to reduce into a double integral over polar region.

5.3.2 Spherical coordinates

(\rho,\theta,\phi)\mapsto (\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\phi)

  1. This shit simplifies computations involving spheres (no shit) and cones.
  2. the Jacobian is dx\ dy\ dz = \rho^2\sin\phi\ d\rho\ d\theta\ d\phi

6 Interlude on Linear Algebra

Suppose T: (u,v)\mapsto (x,y), then \iint_{T(R)} f(x,y)\ dx\ dy = \iint_{R} (f\circ T)(u,v)\left\lvert \det(T') \right\rvert\ du\ dv where T' = \displaystyle\frac{\partial (x,y)}{\partial (u,v)}. (I need a commutative diagram for this shit.)

Find R by tracing T^{-1} along boundary regions of T(R). Higher-dimensional cases are analogous.

7 Vector Calculus

7.1 Potential functions

Conservative.
\mathbf{F} is a conservative vector field if there exists \varphi: \mathbb{R}^n\to\mathbb{R} such that \mathbf{F} = \nabla \varphi.
Test for conservativeness.
Whenever \mathbf{F} is defined in an open and simply-connected (no holes) region. Suppose \mathbf{F} = \left\langle D_1\varphi,D_2\varphi,\dots,D_n\varphi \right\rangle for some \varphi, then test if all 2nd-order partial derivatives of \varphi indeed commute.
In short, \nabla\times\mathbf{F} = \mathbf{0}.
Find potential function when \mathbf{F} is defined on box.
If eye power fails, do partial integrations on \mathbf{F}.
Fundamental Theorem for Curve Integrals.
If there exists \varphi: \mathbb{R}^n\to\mathbb{R} such that \mathbf{F} = \nabla \varphi, let P,Q be start and end of curve C respectively, then \int_{P,C}^Q \mathbf{F}\cdot d\mathbf{r} = \varphi(Q) - \varphi(P).
Corollaries.
  1. When \mathbf{F} admits a potential function, integral of F is independent of the path C joining P and Q.
  2. If C is a closed path (same start/end point) and \int_C \mathbf{F} \ne 0, then \mathbf{F} is not conservative. (contrapositive)

7.2 Line & Surface integrals

Notation. Let everything be as differentiable as needed.

  1. f denotes a scalar field.
  2. \mathbf{F} denotes a vector field.
  3. C denotes a smooth (C^1) curve.
    • Let \mathbf{r}(t): I\to\mathbb{R}^n be a parametrisation.
  4. S denotes a surface.
    • Let \mathbf{r}(u,v): D \to\mathbb{R}^3 be a parametrisation.
    • Then \mathbf{n} = \pm \displaystyle\frac{\mathbf{r}_u \times \mathbf{r}_v}{\left\lVert \mathbf{r}_u \times \mathbf{r}_v \right\rVert} is a unit normal vector

Formulas will be \begin{gather*} \int_C f \ d\mathbf{r} = \int_I f(\mathbf{r}(t)) \left\lVert \mathbf{r}'(t) \right\rVert\ dt \tag*{(1)} \\ \int_C \mathbf{F}\cdot d\mathbf{r} = \int_I \mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)\ dt \tag*{(2)} \\ \iint_S f \ dS = \iint_D f(\mathbf{r}(u,v)) \left\lVert \mathbf{r}_u \times \mathbf{r}_v \right\rVert\ dA \tag*{(3)} \\ \iint_S \mathbf{F}\cdot \ d\mathbf{S} = \iint_D \mathbf{F}(\mathbf{r}(u,v))\cdot \left(\mathbf{r}_u \times \mathbf{r}_v\right) \ dA \tag*{(4)} \end{gather*}

Notes.

  1. Computationally we write (example in 2-space) as symbolic shorthand \int_C \mathbf{F}\cdot d\mathbf{r} = \int_I f_1\ dx + f_2\ dy.

  2. Computations can be skipped if \mathbf{F} is conservative, refer to section above.

  3. Be careful of orientation conventions for \mathbf{n}, possibly switching the cross product.

    When \mathbf{r}(x,y) = \left\langle x,y,g\left(x,y\right) \right\rangle, \mathbf{r}_x \times \mathbf{r}_y = \left\langle -g_x, -g_y, 1 \right\rangle. Computationally rewrite (4) as \iint_S \mathbf{F}\cdot \ d\mathbf{S} = \pm \iint_D -f_1 g_x - f_2 g_y + f_3 \ dy\ dx.

7.3 Divergence and curl

Divergence.
\nabla\cdot \mathbf{F} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}
Curl.
\nabla\times \mathbf{F} = \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ \frac{\partial }{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ f_1&f_2&f_3 \end{vmatrix}

For any vector field \mathbf{F}, \nabla\cdot\left(\nabla\times\mathbf{F}\right) = 0

7.4 Theorems that let you interchange stuff

Green’s Theorem (2d).
Let C be a closed path and A be region bounded by C, \mathbf{F} = \left\langle f_1,f_2 \right\rangle, \oint_C \mathbf{F} = \oint_C f_1\ dx + f_2\ dy = \iint_A \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) \ dy\ dx. Convention: A lies to the left of the curve C.
Gauss’ Divergence Theorem.
Let S be boundary surface of E with outward orientation, then \iint_S \mathbf{F}\cdot d\mathbf{S} = \iiint_E \nabla\cdot\mathbf{F} \ dV.
Stokes’ Theorem.
Let C be boundary curve of surface S with unit normal \mathbf{n}. Let C be positively oriented (\mathbf{r}'(t)\times \mathbf{n} points out), then \oint_C \mathbf{F}\cdot d\mathbf{r} = \iint_S \nabla\times\mathbf{F}\cdot d\mathbf{S}.

8 Trig identities

\begin{pmatrix} \cos(\alpha+\beta) &-\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix}

8.1 Pre-computing spherical stuff

Fix \rho, let \mathbf{r} parametrise something, \begin{align*} \mathbf{r}(\phi,\theta) &= \rho\begin{pmatrix} \sin\phi\cos\theta\\ \sin\phi\sin\theta\\ \cos\phi \end{pmatrix}; & \mathbf{r}_{\phi} &= \rho\begin{pmatrix} \cos\phi\cos\theta \\ \cos\phi\sin\theta \\ -\sin\phi \end{pmatrix} & \mathbf{r}_{\theta} &= \rho\begin{pmatrix} -\sin\phi\sin\theta \\ \sin\phi\cos\theta \\ 0 \end{pmatrix} \end{align*} then \mathbf{r}_{\phi}\times \mathbf{r}_{\theta} points outwards, and \begin{align*} \mathbf{r}_{\phi}\times \mathbf{r}_{\theta} &= \rho^2 \begin{pmatrix} -\sin^2\phi \cos\theta \\ \sin^2\phi\sin\theta \\ \cos\phi\sin\phi \end{pmatrix} \end{align*}