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As this homework concerns Abelian groups, additive notation will be used throughout. All subgroups
are automatically normal.

1

Cauchy’s Theorem (finite Abelian groups). Let 𝐴 be a finite Abelian group of order 𝑛. Suppose 𝑝 ∈ ℕ
is a prime such that 𝑝 ∣ 𝑛, then there exists an 𝑣 ∈ 𝐴, 𝑣 ≠ 0 such that 𝑝 ⋅ 𝑣 = 0.

Proof. Case of |𝐴| = 1 is vacuous. Case where |𝐴| = 2 is trivial. Suppose result holds for all groups of
size less than 𝑛, let 𝐴 be a Abelian group of order 𝑛 and let 𝑝 ∈ ℕ be a prime such that 𝑝 ∣ 𝑛. Let the
prime factorisation of 𝑛 be

𝑛 = 𝑝𝑒𝑞1𝑞2 ⋯ 𝑞𝑟

where 𝑞1, 𝑞2, … , 𝑞𝑟 are possibly repeated primes of which none are equal to 𝑝.

Since we are in the case that |𝐴| > 1, take 𝑎 ∈ 𝐴 ∖ { 0 }. If the order of 𝑎 is a multiple of 𝑝, then let
ord(𝑎) = 𝑝𝑞′. By setting 𝑥 = 𝑞′ ⋅ 𝑎, we have 𝑝 ⋅ 𝑥 = 𝑝 ⋅ (𝑞′ ⋅ 𝑎) = 0.

In the other case where 𝑝 ∤ ord(𝑎), ord(𝑎) = 𝑞 ∣ 𝑞1𝑞2 ⋯ 𝑞𝑟. We generate the cyclic subgroup of 𝑎,
denoted ⟨𝑎⟩. This subgroup is non-trivial as 𝑎 ≠ 0, then the quotient group𝐴/ ⟨𝑎⟩ has size𝑛/𝑞. Denote
that as 𝑝𝑒 ̂𝑞, where 𝑝𝑒 ̂𝑞𝑞 = 𝑛. Since 𝑝𝑒 ̂𝑞 < 𝑛, use induction hypothesis to find 𝑥 + ⟨𝑎⟩ ∈ 𝐴/ ⟨𝑎⟩ such
that 𝑝 ⋅ (𝑥 + ⟨𝑎⟩) = 0 + ⟨𝑎⟩ and 𝑥 + ⟨𝑎⟩ ≠ 0 + ⟨𝑎⟩ or equivalently 𝑥 ∉ 𝑎.

Then 𝑝 ⋅ 𝑥 + ⟨𝑎⟩ = 𝑝 ⋅ (𝑥 + ⟨𝑎⟩) = 0 + ⟨𝑎⟩, which shows that 𝑝𝑥 ∈ ⟨𝑎⟩. Let 𝑝𝑥 = 𝑏 ∈ ⟨𝑎⟩ and

1



MA2202S Homework 3 26th October 2018

𝑙 = ord(𝑏) ∣ 𝑞, so in particular gcd(𝑝, 𝑙) = 1. Let 𝑐, 𝑑 ∈ ℤ such that 𝑐𝑝 + 𝑑𝑙 = 1, then

𝑝𝑥 = 𝑏

= (𝑐𝑝 + 𝑑𝑙)𝑏

= 𝑐𝑝𝑏 + 𝑑𝑙𝑏

= 𝑝𝑐𝑏

𝑝(𝑥 − 𝑐𝑏) = 0

Now 𝑥 ≠ 𝑐𝑏, because 𝑐𝑏 ∈ ⟨𝑎⟩ but 𝑥 ∉ ⟨𝑎⟩. Setting 𝑣 = 𝑥 − 𝑐𝑏 completes the proof. �

(i)

We proceed via induction on the order of 𝐴. Base case when 𝑛 = 1 is vacuously true. Suppose result
holds for all finite Abelian groups of order less than 𝑛.

Let 𝐴 have order 𝑛 and fix a prime divisor 𝑝𝑖 of 𝑛. Let 𝑝 = 𝑝𝑖 and 𝑒 = 𝑒𝑖.

Set 𝐵 = { 𝑎 ∈ 𝐴 ∶ 𝑝𝑒 ⋅ 𝑎 = 0 }.

Claim 0. 𝐵 is a subgroup of 𝐴.

Suppose 𝑏1, 𝑏2 ∈ 𝐵, then 𝑝𝑒𝑏1 + 𝑝𝑒𝑏2 = 𝑝𝑒 (𝑏1 + 𝑏2) = 0, so 𝑏1 + 𝑏2 ∈ 𝐵. We are done because 𝐵 is
finite.

Observation 1 (Characterising property). If 𝑝𝑒+𝑘 ⋅ 𝑎 = 0 for some 𝑘 ∈ ℕ, 𝑎 ∈ 𝐴, then 𝑎 ∈ 𝐵.

As ord(𝑎) ∣ 𝑝𝑒+𝑘, ord(𝑎) is a power of 𝑝, but ord 𝑎 ∣ 𝑛 which entails that the power is at most 𝑒, hence
𝑝𝑒 ⋅ 𝑎 = 0.

Claim 2. 𝐵 ≠ { 0 } and 𝑝 ∣ |𝐵|.

By Cauchy’s theorem, there exist an element of 𝑎 ∈ 𝐴 with order 𝑝, so 𝑎 ∈ 𝐵 and 𝐵 is not trivial.
Additionally, by theorem of Lagrange, ord(𝑎) = 𝑝 ∣ |𝐵|.

Claim 3. For any 𝑗 ≠ 𝑖, 𝑝𝑗 ∤ |𝐵|.

Suppose on the contrary that 𝑝𝑗 ∣ |𝐵|, by Cauchy theorem there exists 𝑏 ∈ 𝐵, 𝑏 ≠ 0 such that 𝑝𝑗 ⋅ 𝑏 = 0.
Then we have ord(𝑏) ∣ 𝑝𝑗 which implies that 𝑝𝑗 ∣ 𝑝 which is absurd.

Now from claim 0, 𝐵 is a subgroup of 𝐴 so |𝐵| divides 𝑛 = 𝑝𝑒1
1 ⋯ 𝑝𝑒𝑟𝑟 . By 2 and 3, |𝐵| = 𝑝𝑒′ where

1 ≤ 𝑒′ ≤ 𝑒 Finally, we claim that 𝑒′ = 𝑒, which will complete the proof.

Suppose on the contrary that 𝑒′ < 𝑒, then we consider the quotient 𝐴/𝐵, which has order
𝑝𝑒′−𝑒 ∏𝑗≠𝑖 𝑝𝑒𝑗

𝑗 < 𝑛. By Cauchy theorem, there exists 𝑣 + 𝐵 ∈ 𝐴/𝐵 such that 𝑣 ∉ 𝐵 and
𝑝 ⋅ (𝑣 + 𝐵) = 0 + 𝐵. Then 𝑝 ⋅ 𝑣 ∈ 𝐵, so by definition of 𝐵, there exists 𝑑 ∈ ℤ such that 𝑝𝑑 ⋅ (𝑝𝑣) = 0 in
𝐴, which implies that 𝑝𝑑+1 ⋅ 𝑣 = 0, shows that 𝑣 ∈ 𝐵, a contradiction. �
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(ii)

Supposewe have a subgroup𝐶 ⊆ 𝐴 such that |𝐶| = 𝑝𝑒𝑖
𝑖 , let𝐵𝑖 be𝐵 as defined above for 𝑝𝑖. It suffices

to show that 𝐶 ⊆ 𝐵𝑖 since both subgroups are of the same size. Let 𝑥 ∈ 𝐶, then 𝑝𝑒𝑖
𝑖 ⋅ 𝑥 = 0 implying

that ord(𝑥) ∣ 𝑝𝑒𝑖
𝑖 which shows 𝑥 ∈ 𝐵𝑖 by observation 1. �

(iii)

Consider the internal sum 𝐵1 + 𝐵2 + ⋯ + 𝐵𝑟. For any 𝑖, consider any 𝑣 ∈ 𝐵𝑖 ∩ ∑𝑗≠𝑖 𝐵𝑖. Then there
exists 𝑏𝑖 ∈ 𝐵𝑖 for all 𝑖 ≠ 𝑗 such that

𝑣 = 𝑏1 + ⋯ + 𝑏𝑖−1 + 𝑏𝑖+1 + ⋯ + 𝑏𝑟

letting ̂𝑝 = 𝑛
𝑝𝑒𝑖

𝑖
, we see that ̂𝑝 kills RHS, so ̂𝑝𝑣 = 0 whichmeans that ord(𝑣) ∣ ̂𝑝. We also have 𝑣 ∈ 𝐵𝑖

and by characterising property ord(𝑣) ∣ 𝑝𝑒𝑖
𝑖 . As gcd(𝑝𝑒𝑖

𝑖 , ̂𝑝) = 1, ord(𝑣) = 1, so 𝑣 = 0 and the sum is
direct.

Given a direct sum, we see that

𝐵1 + 𝐵2 + ⋯ + 𝐵𝑟 ≃ 𝐵1 ⊕ 𝐵2 ⊕ ⋯ ⊕ 𝐵𝑟.

The RHS has size 𝑝𝑒1
1 𝑝𝑒2

2 ⋯ 𝑝𝑒𝑟𝑟 = 𝑛, so the LHS also has the same size. Then as

𝐵1 + 𝐵2 + ⋯ + 𝐵𝑟 ⊆ 𝐴

and |𝐴| = 𝑛, this cardinality argument shows that equality in fact holds. �

(iv)

By Lagrange theorem, 𝑝𝑓1
1 ∣ 𝑛 = 𝑝𝑒1

1 ⋯ 𝑝𝑒𝑟𝑟 , which implies that 𝑓1 ≤ 𝑒1. Let 𝑐 ∈ 𝐶 be arbitrary, then
𝑝𝑓1

1 ⋅ 𝑐 = 0 which means 𝑐 ∈ 𝐵1, hence 𝐶 ⊆ 𝐵1. �

(v)

Only one because Sylow 𝑝𝑖-subgroups are unique by (ii).
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Listing out the invariant factors

• 3 ∣ 3 ⋅ 3 ⋅ 5 ⋅ 5,
• 3 ∣ 3 ∣ 3 ⋅ 5 ⋅ 5,
• 3 ∣ 3 ⋅ 5 ∣ 3 ⋅ 5,
• 5 ∣ 3 ⋅ 3 ⋅ 3 ⋅ 5,
• 3 ⋅ 5 ∣ 3 ⋅ 3 ⋅ 5,
• 3 ⋅ 3 ⋅ 3 ⋅ 5 ⋅ 5.

Which gives the following isomorphism classes

𝜇3 ⊕ 𝜇225

𝜇3 ⊕ 𝜇3 ⊕ 𝜇75

𝜇3 ⊕ 𝜇15 ⊕ 𝜇15

𝜇5 ⊕ 𝜇135

𝜇15 ⊕ 𝜇45

𝜇675

Let 𝐴, 𝐵 be two distinct groups from the list above, let 𝑑𝐴, 𝑑𝐵 be the largest invariant factor for 𝐴, 𝐵
respectively. As each invariant factor divides the next, we know that elements in 𝐴 have order at most
𝑑𝐴, of which one has order exactly 𝑑𝐴, similarly for 𝐵. Without loss of generality assume 𝑑𝐴 < 𝑑𝐵,
then it is impossible for𝐴 to have an element of order 𝑑𝐵, which shows a structural difference between
𝐴 and 𝐵. �
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