Question 6
(a)
Let \(\alpha = a + bi + cj + dk\). Note that \[\begin{align*} N(\overline{\alpha}) &= a^2 + (-b)^2 + (-c)^2 + (-d)^2 \\ &= a^2 + b^2 + c^2 + d^2 \\ &= N(\alpha) \end{align*}\] and \[\begin{align*} \alpha\overline{\alpha}&= (a + bi + cj + dk)(a - bi - cj - dk) \\ &= a^2 - abi - acj - adk \\ &\quad + bia - b^2i^2 - bicj - bidk \\ &\quad + cja - cjbi - c^2j^2 - cjdk \\ &\quad + dka - dkbi - dkcj - d^2k^2 \\ &= a^2 + b^2 + c^2 + d^2 \\ &= N(\alpha) \end{align*}\] also, as \(\overline{\overline{\alpha}} = \alpha\), we have \(N(\overline{\alpha}) = \overline{\alpha}\overline{\overline{\alpha}} = \overline{\alpha}\alpha\).
(b)
Let \(\beta = p + qi + rj + sk\), then \[\begin{align*} \alpha\beta &= (a + bi + cj + dk)(p + qi + rj + sk) \\ &= ap + aqi + arj + ask \\ &\quad + pbi - bq + brk - bsj \\ &\quad + pcj - cqk - cr + csi \\ &\quad + pdk + dqj - dri - ds \\ &= ap - bq - cr - ds \\ &\quad + (aq + pb + cs - rd)i \\ &\quad + (ar + pc - bs + qd)j \\ &\quad + (as + pd + br - qc)k \\ \end{align*}\]
Define \(h: H_\mathbb{R} \to M_2(\mathbb{C})\) as \[ a + bi + cj + dk \mapsto \begin{pmatrix} a + bi & -c - di \\ c - di & a - bi \end{pmatrix} \] Let \(w = a + bi, x = c + di, y = p + qi, z = r + si\) and \(w^*\) denote its complex conjugate, we have \[\begin{align*} \begin{pmatrix} w & -x \\ x^* & w^* \end{pmatrix} \begin{pmatrix} y & -z \\ z^* & y^* \end{pmatrix} &= \begin{pmatrix} wy - xz* & -wz - xy^* \\ x^*y + w^*z^* & -x^*z + w^*y^* \end{pmatrix} \\ &= \begin{pmatrix} wy - xz* & -wz - xy^* \\ (wz + xy^*)^* & (wy - xz^*)^* \end{pmatrix} \\ wy - xz^* &= (a+bi)(p+qi) - (c+di)(r-si) \\ &= ap - bq - cr - ds + (aq + bp + cs - rd)i \\ wz + xy* &= (a+bi)(r+si) + (c+di)(p-qi) \\ &= ar - bs + pc + dq + (as + br + pd - qc)i \end{align*}\] therefore \(h(\alpha\beta) = h(\alpha)h(\beta)\) (\(h\) preserving addition is obvious).
Now observe that \(N(\alpha) = \det(h(\alpha))\) and result follows.
(c)
Suppose \(\alpha \in H_\mathbb{Z}\) is a unit, let \(\beta\) such that \(\alpha\beta = 1\), then \(N(\alpha)N(\beta) = 1\) and since \(N(H_\mathbb{Z}) \subseteq \left\{0,1,2,\dots\right\}\) we have \(N(\alpha) = N(\beta) = 1\). Conversely suppose \(N(\alpha) = 1\), we know that \[ \alpha^{-1} = \frac{\overline{\alpha}}{N(\alpha)} \in H_\mathbb{Q} \] and as \(N(\alpha) = 1\), it turns out that \(\alpha^{-1} = \overline{\alpha}\in H_\mathbb{Z}\), so \(\alpha\) is a unit. Observe that the only possible elements in \(H_\mathbb{Z}\) with norm 1 are precisely \(\left\{\pm 1,\pm i,\pm j,\pm k\right\}\), so the set of units is the quaternion group.
Question 7
(a)
As addition is defined pointwise the properties easily carry from \(R\). We still need to check the properties of multiplication.
- Cauchy product commutative when \(R\) is
- it follows from commutativity of \(\cdot\) in \(R\) that \[ \sum_{i=0}^n a_ib_{n-i} = \sum_{j=0}^n b_ja_{n-j} \]
- Cauchy product associative
- applying commutativity of \(+\) and associativity of \(\cdot\) and distributivity in \(R\) to coefficients, we get
\[\begin{align*} \left(\left(\sum a_nx^n\right)\left(\sum b_nx^n\right)\right) \left(\sum c_nx^n\right) &= \sum_n \left(\sum_{j=0}^n \left( \sum_{i=0}^j a_ib_{j-i} \right) c_{n-j}\right) x^n \\ &= \sum_n \left(\sum_{j=0}^n \sum_{i=0}^j a_ib_{j-i}c_{n-j}\right) x^n \\ &= \sum_n \left(\sum_{i=0}^n \sum_{j=i}^n a_ib_{j-i}c_{n-j}\right) x^n \\ % k = j-i &= \sum_n \left(\sum_{i=0}^n \sum_{k=0}^{n-i} a_ib_{k}c_{n-i-k}\right) x^n \\ &= \sum_n \left(\sum_{i=0}^n a_i \left(\sum_{k=0}^{n-i} b_{k}c_{n-i-k}\right)\right) x^n \\ &= \left(\sum a_nx^n\right)\left(\left(\sum b_nx^n\right) \left(\sum c_nx^n\right)\right) \end{align*}\]
- Cauchy product distributes
- By commutativity we just show \((A+B)C = AC + BC\)
\[\begin{align*} \left(\sum (a_n+b_n)x^n\right) \sum c_nx^n &= \sum_n \left(\sum_{i=0}^n (a_i+b_i)c_{n-i} \right) x^n \\ &= \sum_n \left(\sum_{i=0}^n a_ic_{n-i} + b_ic_{n-i} \right) x^n \\ &= \left(\sum a_nx^n\right) \left(\sum c_nx^n\right) + \left(\sum b_nx^n\right) \left(\sum c_nx^n\right) \end{align*}\]
- \(1_R\) is \(1_{R[[x]]}\)
- easy to check that \[\left(1 + 0x + 0x^2 + \dots\right) \sum_n a_nx^n = \sum_n \left(\sum_{i=0}^n \delta_{i0}a_{n-i}\right) x^n = \sum_n a_nx^n \] where \(\delta_{ij}\) is \(1\) if \(i=j\) else \(0\)
(b)
We just multiply out \(1-x\) and \(\sum_{j=0}^\infty x^j\). \[\begin{align*} (1-x)\sum_{j=0}^\infty x^j &= \sum_{j=0}^\infty x^j - x\sum_{j=0}^\infty x^j \\ &= \sum_{j=0}^\infty x^j - \sum_{j=1}^\infty x^j \\ &= 1 \end{align*}\]
(c)
Suppose \(f=\sum a_nx^n\) is a unit in \(R[[x]]\), let \(g=\sum b_nx^n\) such that \(1 = fg\), \[ 1 = fg = \sum_n \left(\sum_{j=0}^n a_{j}b_{n-j}\right) x^n \] by comparing coefficients, \(1 = a_0b_0\) and for all \(n>1\), \[ \sum_{j=0}^n a_jb_{n-j} = 0 \] so in particular \(a_0\) is a unit in \(R\).
Conversely suppose \(a_0\) is a unit, let \(a_0b_0 = 1 = b_0a_0\), recursively define for all \(n>1\) \[ b_n = -b_0\sum_{j=1}^n a_jb_{n-j}. \] Now we have \(a_0b_0 = 1\) and for all \(n>1\), \[\begin{align*} a_0b_n &= -\sum_{j=1}^n a_jb_{n-j} \\ 0 &= \sum_{j=0}^n a_jb_{n-j} \end{align*}\] which shows that \(fg = 1\).