Exercise 4.16

Qi Ji (A0167793L)

12th September 2018

Let \(X \subseteq \mathbb{N}\). Suppose \(X\) has the property that \(\forall n\in X \left[ n\subseteq X \right]\). Show that either \(X=\mathbb{N}\) or there exists \(n\in \mathbb{N}\) such that \(X = n\).

Proof. Let \(X\subseteq \mathbb{N}\), we consider \(\mathbb{N}\smallsetminus X\) which is also a subset of \(\mathbb{N}\). If \(\mathbb{N}\smallsetminus X\) is empty, then \(X = \mathbb{N}\), so go on vacation. Otherwise suppose \(\mathbb{N}\smallsetminus X\) non-empty, then by Lemma 4.11, \[\exists n\in \mathbb{N}, n\notin X \left[ (\mathbb{N}\smallsetminus X) \cap n = \emptyset \right].\]

Claim. \(X = n\).