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Forcing Crash Course

Start with 𝑀 a transitive model of ZFC, consider (ℙ, ≤, 1ℙ) ∈ 𝑀.

ℙ-names 𝑀ℙ = {(𝑥, 𝑝) ∶ 𝑥 ∈ 𝑀ℙ, 𝑝 ∈ ℙ} defined recursively.

𝐺 generic over 𝑀 when 𝐺 meets every dense set in ℙ.

Intuitively 𝐺 encodes an object added to 𝑀 which does not have
any property that is definable in 𝑀.
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Symmetric extension

Consider 𝒢 be a group of automorphisms ℙ → ℙ,

Each 𝜋 ∈ 𝒢 can be naturally extended into an automorphism
𝜋∗ ∶ 𝑀ℙ → 𝑀ℙ by

𝜋∗(𝑥, 𝑝) = {(𝜋∗𝑦, 𝜋𝑝) ∶ 𝑦 ∈ 𝑥} .

Given a normal filter (on algebra of subgroups of 𝒢) ℱ we can
use it to define the notion of symmetric. A 𝑥 ∈ 𝑀ℙ is symmetric
if its stabilizer is in the filter.

Normal filters are also closed under conjugation, if 𝜋 ∈ 𝒢 and
𝐻 ∈ ℱ then 𝜋𝐻𝜋−1 ∈ ℱ.
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Symmetric extension

𝑥 ∈ 𝑀ℙ is a hereditarily symmetric name if 𝑥 is symmetric and
every member in dom(𝑥) is hereditarily symmetric. Denote them
HS.

Consider subset of 𝑀[𝐺] formed by using 𝐺 to evaluate all the
names in HS

𝑁 = {𝑥[𝐺] ∶ 𝑥 ∈ 𝑀ℙ} .

𝑀 ⊆ 𝑁 ⊆ 𝑀[𝐺]

Check: 𝑁 ⊧ ZF.
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Cohen models
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Basic Cohen model
The first model produced in which choice fails (showing
independence).

Force with ℙ finite partial functions 𝜔 × 𝜔 ⇀ 2, ordered by
reverse containment ≤=⊇.

Idea: add 𝜔 many reals satisfying

𝑥𝑛 = {𝑚 ∈ 𝜔 ∶ (∃𝑝 ∈ 𝐺) 𝑝(𝑛, 𝑚) = 1} .

𝑁 should contain 𝐴 = {𝑥𝑛 ∶ 𝑛 ∈ 𝜔} but not know how to
well-order it.

Come up with names for objects we wish to add

̊𝑥𝑛 = {(�̌�, 𝑝) ∶ 𝑚 ∈ 𝜔, 𝑝 ∈ ℙ, 𝑝(𝑛, 𝑚) = 1}

̊𝐴 = {( ̊𝑥𝑛, 1ℙ) ∶ 𝑛 ∈ 𝜔}
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Basic Cohen model
Any permutation 𝜋0 ∶ 𝜔 → 𝜔 induces an automorphism
𝜋 ∶ ℙ → ℙ as

𝜋𝑝 = {((𝜋0𝑛, 𝑚), 𝑦) ∶ ((𝑛, 𝑚), 𝑦) ∈ 𝑝} .

Let 𝒢 be all such induced permutations on ℙ, then for any finite
𝐵 ⊂ 𝜔, we look at permutations induced by ones in its stabilizer

fix(𝐵) = {𝜋 ∈ 𝒢 ∶ ∀𝑛 ∈ 𝐵 (𝜋0𝑛 = 𝑛)} .

Use stabilizers of all finite subsets to generate a (normal) filter

ℱ = {𝐻 ∶ ∃ finite 𝐵 ⊆ 𝜔 (fix(𝐵) ⊆ 𝐻)} .

Let 𝒢 and ℱ determine HS and if we let 𝐺 be a generic filter,
we yield a symmetric model 𝑁.
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Failure of choice in basic Cohen model

Check: 𝜋∗ ̊𝑥𝑛 = ̊𝑥𝜋𝑛

̊𝑥𝑛 is symmetric as its stabilizer contains fix({𝑛}).

Claim: 𝑁 ⊧ 𝑥𝑖 ≠ 𝑥𝑗 whenever 𝑖 ≠ 𝑗

Suppose 𝑝 ∈ ℙ such that 𝑝 ⊩ ̊𝑥𝑖 = ̊𝑥𝑗. 𝑝 is finite so we can find
an extension 𝑞 ≤ 𝑝 that forces 𝑚 ∈ 𝑥𝑖 ∧ 𝑚 ∉ 𝑥𝑗 for some 𝑚 ∈ 𝜔.

Claim: There does not exist a bijection 𝑓 ∶ 𝜔 → 𝐴.

Suppose there is, let 𝑝0 ∈ 𝐺 such that

𝑝0 ⊩ ̊𝑓 is a bijection �̌� → ̊𝐴.
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Failure of choice in basic Cohen model
𝑓 ∈ 𝑁 so ̊𝑓 is symmetric. Let 𝐵 ⊆ 𝜔 be finite such that fix(𝐵) is
contained in stabilizer of ̊𝑓.

Let 𝑛 ∉ 𝐵, 𝑖 ∈ 𝜔, 𝑝 ≤ 𝑝0 such that

𝑝 ⊩ ̊𝑓( ̌𝑖) = ̊𝑥𝑛.

Now we can find 𝜋 ∈ 𝒢 satisfying

i. 𝜋𝑝 compatible with 𝑝
ii. 𝜋 ∈ fix(𝐵)
iii. 𝜋𝑛 ≠ 𝑛

Then 𝜋𝑝 ⊩ (𝜋 ̊𝑓)(𝜋 ̌𝑖) = 𝜋 ̊𝑥𝑛, so

𝑝 ∪ 𝜋𝑝 ⊩ ̊𝑓( ̌𝑖) = ̊𝑥𝑛 ∧ ̊𝑓( ̌𝑖) = ̊𝑥𝜋𝑛.
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Second Cohen model

Countable choice fails (𝑁 knows that our misbehaving set is
countable).

Force with ℙ finite partial functions (𝜔 × 2 × 𝜔) × 𝜔 ⇀ 2,
ordered by reverse containment ≤=⊇.

Define the notions (ℙ-names omitted)

𝑥𝑛𝜀𝑖 = {𝑗 ∈ 𝜔 ∶ (∃𝑝 ∈ 𝐺) (𝑝(𝑛𝜀𝑖, 𝑗) = 1)}
𝑋𝑛𝜀 = {𝑥𝑛𝜀𝑖 ∶ 𝑖 ∈ 𝜔}
𝑃𝑛 = {𝑋𝑛0, 𝑋𝑛1}
𝐴 = {𝑃𝑛 ∶ 𝑛 ∈ 𝜔}
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Second Cohen model
Again we can extend permutations on (𝜔 × 2 × 𝜔) to permutations on
ℙ naturally

𝜋𝑝 = {((𝜋0(𝑛𝜀𝑖), 𝑗), 𝑦) ∶ (((𝑛𝜀𝑖), 𝑗), 𝑦) ∈ 𝑝} .

Restrict our attention to permutations 𝜋0 satisfying

i. 𝑛′ = 𝑛
ii. for each 𝑛 either ∀𝑖 (𝜀′ = 𝜀) or ∀𝑖 (𝜀′ ≠ 𝜀)

Consider the automorphism group 𝒢 of all such permutations extended
to ℙ then to 𝑀ℙ, for any finite 𝐵 ⊂ (𝜔 × 2 × 𝜔),

fix(𝐵) = {𝜋 ∈ 𝒢 ∶ ∀𝑛 ∈ 𝐵 (𝜋0𝑛 = 𝑛)} .

Again we can generate a normal filter, and proceed to get symmetric
model.
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Second Cohen model

Check: 𝑥𝑛𝜀𝑖, 𝑋𝑛𝜀, 𝑃𝑛, 𝐴 all in 𝑁 (their names are symmetric).

Claim: 𝑁 ⊧ 𝐴 is countable.

Define ̊𝑔 = {((�̌�, ̊𝑃𝑛), 1ℙ) ∶ 𝑛 ∈ 𝜔}, check that ̊𝑔 is HS.
Evaluating ̊𝑔 will enumerate ⟨𝑃𝑛 ∶ 𝑛 ∈ 𝜔⟩.
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Failure of choice in second Cohen model
Suppose 𝑓 is a choice function on 𝐴, let ̊𝑓 ∈ HS be its symmetric
name and 𝑝0 ∈ 𝐺 force

𝑝0 ⊩ ̊𝑓 is a function with domain ̊𝐴 and ̊𝑓( ̊𝑃𝑛) ∈ ̊𝑃𝑛 for all 𝑛.

Let 𝐵 ⊆ 𝜔 × 2 × 𝜔 such that stabiliser of ̊𝑓 contains fix(𝐵), let
𝑛 ∈ 𝜔, 𝑝 ≤ 𝑝0, 𝜀0 such that (wlog suppose 𝜀0 = 0)

𝑝 ⊩ ̊𝑓( ̊𝑃𝑛) = �̊�𝑛0.

We can find 𝜋 ∈ 𝒢 satisfying

i. 𝜋𝑝 compatible with 𝑝
ii. 𝜋 ∈ fix(𝐵)
iii. 𝜋(�̊�𝑛0) = 𝜋(�̊�𝑛1)
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Failure of choice in second Cohen model
How? Observe that 𝑖-coordinate is “free”, we are free to shuffle the
sequence ⟨𝑥𝑛𝜀𝑖 ∶ 𝑖 ∈ 𝜔⟩.

Let 𝜋 be extended from

𝜋0(𝑛, 0, 𝑖) =
⎧{
⎨{⎩

(𝑛, 1, 𝑖 + 𝑘) when𝑖 < 𝑘
(𝑛, 1, 𝑖 − 𝑘) when𝑘 ≤ 𝑖 < 2𝑘
(𝑛, 1, 𝑖) otherwise

𝜋0(𝑛, 1, 𝑖) = similar to above
and identity everywhere else.

With 𝜋 obtained, use similar forcing argument as Cohen basic model
to get

𝑁 ⊧ 𝑓 is not a function.
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Next steps

Every set of real is Lesbegue measurable (Solovay).

All uncountable cardinals being singular (Gitik).
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Thank you
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