Models of Set Theory without Choice

Midterm Progress Talk

Qi Ji

NUS Department of Mathematics

19th January 2021

https://m5th.b0ss.net/MA4199/slides-midterm.pdf

- Start with M a transitive model of ZFC, consider $(\mathbb{P}, \leq, 1_{\mathbb{P}}) \in M$.
- $\mathbb{P}\text{-names }M^{\mathbb{P}}=\left\{(x,p):x\in M^{\mathbb{P}},p\in \mathbb{P}\right\}$ defined recursively.
- G generic over M when G meets every dense set in \mathbb{P} .

Intuitively G encodes an object added to M which does not have any property that is definable in M.

Symmetric extension

- $\bullet~\mbox{Consider}~\mathcal{G}$ be a group of automorphisms $\mathbb{P}\to\mathbb{P},$
- Each $\pi\in\mathcal{G}$ can be naturally extended into an automorphism $\pi_*:M^\mathbb{P}\to M^\mathbb{P}$ by

$$\pi_*(x,p)=\left\{(\pi_*y,\pi p):y\in x\right\}.$$

• Given a normal filter (on algebra of subgroups of \mathcal{G}) \mathcal{F} we can use it to define the notion of *symmetric*. A $x \in M^{\mathbb{P}}$ is symmetric if its stabilizer is in the filter.

Normal filters are also closed under conjugation, if $\pi \in \mathcal{G}$ and $H \in \mathcal{F}$ then $\pi H \pi^{-1} \in \mathcal{F}$.

- $x \in M^{\mathbb{P}}$ is a hereditarily symmetric name if x is symmetric and every member in dom(x) is hereditarily symmetric. Denote them **HS**.
- \bullet Consider subset of M[G] formed by using G to evaluate all the names in ${\rm HS}$

$$N = \left\{ x[G] : x \in M^{\mathbb{P}} \right\}.$$

• $M \subseteq N \subseteq M[G]$

Check: $N \models \mathbf{ZF}$.

Cohen models

Basic Cohen model

- The first model produced in which choice fails (showing independence).
- Force with ℙ finite partial functions ω × ω → 2, ordered by reverse containment ≤=⊇.
- Idea: add ω many reals satisfying

$$x_n = \left\{m \in \omega: (\exists p \in G) \, p(n,m) = 1 \right\}.$$

 $N \mbox{ should contain } A = \{x_n: n \in \omega\}$ but not know how to well-order it.

• Come up with names for objects we wish to add

$$\begin{split} \mathring{x}_n &= \{(\check{m},p): m \in \omega, p \in \mathbb{P}, p(n,m) = 1\} \\ \\ \mathring{A} &= \{(\mathring{x}_n, 1_{\mathbb{P}}): n \in \omega\} \end{split}$$

Basic Cohen model

• Any permutation $\pi_0:\omega\to\omega$ induces an automorphism $\pi:\mathbb{P}\to\mathbb{P}$ as

$$\pi p = \left\{ \left((\pi_0 n, m), y\right) : \left((n, m), y\right) \in p \right\}.$$

 Let G be all such induced permutations on P, then for any finite B ⊂ ω, we look at permutations induced by ones in its stabilizer

$$\operatorname{fix}(B) = \left\{ \pi \in \mathcal{G} : \forall n \in B \left(\pi_0 n = n \right) \right\}.$$

• Use stabilizers of all finite subsets to generate a (normal) filter

$$\mathcal{F} = \{H : \exists \text{ finite } B \subseteq \omega (\operatorname{fix}(B) \subseteq H)\}.$$

• Let \mathcal{G} and \mathcal{F} determine **HS** and if we let G be a generic filter, we yield a symmetric model N.

Failure of choice in basic Cohen model

• Check:
$$\pi_* \mathring{x}_n = \mathring{x}_{\pi n}$$

 \mathring{x}_n is symmetric as its stabilizer contains fix $(\{n\})$.

• Claim: $N \models x_i \neq x_j$ whenever $i \neq j$

Suppose $p \in \mathbb{P}$ such that $p \Vdash \mathring{x}_i = \mathring{x}_j$. p is finite so we can find an extension $q \leq p$ that forces $m \in x_i \land m \notin x_j$ for some $m \in \omega$.

Claim: There does not exist a bijection $f: \omega \to A$.

• Suppose there is, let $p_0 \in G$ such that

$$p_0 \Vdash \mathring{f}$$
 is a bijection $\check{\omega} \to \mathring{A}$.

Failure of choice in basic Cohen model

- $f \in N$ so \mathring{f} is symmetric. Let $B \subseteq \omega$ be finite such that fix(B) is contained in stabilizer of \mathring{f} .
- Let $n \notin B, i \in \omega, p \leq p_0$ such that

$$p \Vdash \mathring{f}(\check{i}) = \mathring{x}_n.$$

• Now we can find $\pi \in \mathcal{G}$ satisfying

i.
$$\pi p$$
 compatible with p
ii. $\pi \in \operatorname{fix}(B)$
iii. $\pi n \neq n$

• Then
$$\pi p \Vdash (\pi \mathring{f})(\pi \widecheck{i}) = \pi \mathring{x}_n$$
, so

$$p \cup \pi p \Vdash \mathring{f}(\check{i}) = \mathring{x}_n \wedge \mathring{f}(\check{i}) = \mathring{x}_{\pi n}.$$

- Countable choice fails (N knows that our misbehaving set is countable).
- Force with P finite partial functions (ω × 2 × ω) × ω → 2, ordered by reverse containment ≤=⊇.

Define the notions (\mathbb{P} -names omitted)

$$\begin{array}{l} \bullet \ x_{n\varepsilon i} = \{j \in \omega : (\exists p \in G) \ (p(n\varepsilon i,j)=1)\} \\ \bullet \ X_{n\varepsilon} = \{x_{n\varepsilon i} : i \in \omega\} \\ \bullet \ P_n = \{X_{n0}, X_{n1}\} \\ \bullet \ A = \{P_n : n \in \omega\} \end{array}$$

Second Cohen model

Again we can extend permutations on $(\omega\times 2\times \omega)$ to permutations on $\mathbb P$ naturally

$$\pi p = \left\{ ((\pi_0(n\varepsilon i),j),y): (((n\varepsilon i),j),y) \in p \right\}.$$

Restrict our attention to permutations π_0 satisfying

$$\begin{array}{ll} \text{i. } n'=n\\ \text{ii. for each }n \text{ either }\forall i\,(\varepsilon'=\varepsilon) \text{ or }\forall i\,(\varepsilon'\neq\varepsilon) \end{array} \end{array}$$

Consider the automorphism group $\mathcal G$ of all such permutations extended to $\mathbb P$ then to $M^{\mathbb P}$, for any finite $B\subset (\omega\times 2\times \omega)$,

$$\operatorname{fix}(B) = \left\{ \pi \in \mathcal{G} : \forall n \in B \left(\pi_0 n = n \right) \right\}.$$

Again we can generate a normal filter, and proceed to get symmetric model.

- Check: $x_{n\varepsilon i}, X_{n\varepsilon}, P_n, A$ all in N (their names are symmetric).
- Claim: $N \models A$ is countable.

Define
$$\mathring{g} = \left\{ ((\check{n}, \mathring{P}_n), 1_{\mathbb{P}}) : n \in \omega \right\}$$
, check that \mathring{g} is **HS**.
Evaluating \mathring{g} will enumerate $\langle P_n : n \in \omega \rangle$.

Failure of choice in second Cohen model

Suppose f is a choice function on A, let $\mathring{f}\in {\rm HS}$ be its symmetric name and $p_0\in G$ force

 $p_0 \Vdash \mathring{f} \text{ is a function with domain } \mathring{A} \text{ and } \mathring{f}(\mathring{P}_n) \in \mathring{P}_n \text{ for all } n.$

Let $B \subseteq \omega \times 2 \times \omega$ such that stabiliser of \mathring{f} contains fix(B), let $n \in \omega, p \leq p_0, \varepsilon_0$ such that (wlog suppose $\varepsilon_0 = 0$)

$$p\Vdash \mathring{f}(\mathring{P}_n)=\mathring{X}_{n0}.$$

We can find $\pi \in \mathcal{G}$ satisfying

i. πp compatible with pii. $\pi \in \text{fix}(B)$ iii. $\pi(\mathring{X}_{n0}) = \pi(\mathring{X}_{n1})$

Failure of choice in second Cohen model

How? Observe that *i*-coordinate is "free", we are free to shuffle the sequence $\langle x_{n\varepsilon i}:i\in\omega
angle$.

Let π be extended from

$$\pi_0(n,0,i) = \begin{cases} (n,1,i+k) & \text{when} i < k \\ (n,1,i-k) & \text{when} k \leq i < 2k \\ (n,1,i) & \text{otherwise} \end{cases}$$

$$\label{eq:phi} \begin{split} \pi_0(n,1,i) = \mbox{similar to above} \\ \mbox{and identity everywhere else.} \end{split}$$

With π obtained, use similar forcing argument as Cohen basic model to get

 $N \models f$ is not a function.

- Every set of real is Lesbegue measurable (Solovay).
- All uncountable cardinals being singular (Gitik).

