Week 10 Exercises
Qi Ji
1st April 2020

When we define =4 := A — 1, itis clearer to discard the =L and —R rules and only use the arrow

ones. It also turns out that | typed the majority of stuff below while using a fake “— L” that is more
symmetric to — R, whichis

so let’s just show that “—L” rule is admissible using the actual —L rule.

: A=A B=1B
r=A4-B A~ B A=DB

T A= B

—L
cut

I don’t think we can derive my fake rule using the real one, since

: need real —L here!

: “ A—-B=A— B
Ir= A A— B A= B :
t1“,A—>B:>B B, I'= A
I'N'A—-B= A

cut

cu

the axiom pseudo-rule for non-atomic formulas is derived using the real —L rule.

In any case for everything below, —L refers to the fake one unless otherwise stated.
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I ——AN = AN,

Case A atomic, then we have a special case ofII— T = T

T = T
—
T, T= 1 R R R M N B L
T=> ——T ———7, T = L
cut
T, 7= 1

SR
— /T i T

Case Ais B A C, then assume we already have II— —-BN = BN and II— ——CN = CVN, we want
I -~(BN ACN)y= BN A CN,

BN= BN |
BNpACN= BN
I ver e S
—R
-BN = (BN p CV) ~(BNACN), (BN A CN) = L

cut

—BYN,=—(BNNCN) = L

—R
cutwithlH - - - - =— = = =" — — — — — — —

~—=(BN A CN)= BN

similar for CV then AR gives II— ——(BN A CN)=> BN A CN as desired.

Case Ais BV C, assume the same IH and we want II— ——=(=BN¥ A =CN) = =(=BN A =CV) but
this is an instance of “triple negation entails single negation”.

Case Ais B — Clisin lecture slides.

Case Ais VxB(x), assume [ I— ——BN(t) = B™(t) with occurences of t suitably indicated and we
want I |- -2 BN (z) = va BN ().

) BN(t) = BN(t) o= L
» VaBN(z)= BN(t)  BN(t),-BN(t)= L
-BN(t),vaBN(z) = L irers L
-BN(t) = =VaBN(2) VBN (x),-VzBN(z) = L
—=VaBN(x),-BN(t)= L

—R

cut

,,,,,,,,,,,,,,,, cut with IH
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where in the VR application the eigenvariable condition is satisfied.

Case Ais 3z B(x), apply “triple negation entails single negation”.

Lemma 2

If-=T = Athen TF-TN,-AN = 1.

| justinterpret' = asI' = | and add the axiom L. = B for any formula B, which gives back ex
falso quodlibet. The advantage of doing so is all intuitionistic sequents will have exactly 1 formula on
the RHS instead of at most 1.

Cases where the last derivation is axiom and —R are in slides.
Case where the last derivation is —L,

I, = A A
T, ~A= A

-

I'm interpreting (—A)" as —A™. This is sensible as (—A)" expands to (4 — L)%, and treating | as
atomic (—A4)N = AN — 1N which s intuitionistically equivalent to AN — 1 = -A"N. So we want
IV, ~AN ~AN => | whichis just the IH.

Case where the last derivation is —R,

LLA= A o
r=A,-A

wewant T TN, —AN ——AN = |,

:1H
PN7AN7_'A]1V:>J~ T = L
IV AN = AN AN AN = |
N Ay, ——AN = |

—R

cut

Case where the last derivation is —L (the classical one). Then for some A — B we have

I=A,A BT, =A,
AS BT, = ALA,

—L

QiJi 3



Week 10 Exercises 1st April 2020

we want to show[l— AN — BN TN AN AN = 1,

‘IH
N IV, —AN = AN M
cutwith Lemmal - = — = = = — — — — — —
ut wi FiV,—'AiVéAN Fjlv,—'AéV,BNiJ_

weaken, ACTUAL (not fake) —L

Y, -AY, =AY, AN — BN = |
Case last derivation is AL1

I,,B= A
I,BNC= A

ALT

aly
F{V, _‘AN’ BN= | ‘Lem1case A
Y, -AN = -BN  -BN= =(BN A CY)
'V -AN= BN ACN — L

—R

cut

—L
N, AN BN ACN = |

and similarly for AL2.

Suppose last derivation is AR,

= A A I'=A,,B
'=A,,ANB
:1H
—R
twith | 1 FN’ _'AJIV = AN * with the other IH
cutwi emmal — =-— — — - — — — — — — —
N, -AN = AN N, AN = BN

AR
N, -AY = AN A BN

77777777777777777 cutwith 7 = ——r

TN, -AN ~(ANABN) = |

as desired, since (A A B)N = AN A BN,

Suppose last derivation is VL,
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AT,=A BT, =A

AVBI, = A vt
*1H
Fjlv, —|AN, AN = | : the other IH

—R

Y, -AN = AN 1Y, -AN = -B~N
Y, —AN = AN A =BV

******************* cutwith = ——7

AR

L
TN, =AN,~(—=AN A =BN) = | -
as desired, note (A Vv B)N = =(=AN A =BY).
Suppose last derivation is VR,
r=A,A
VRI1
'=A,,AVB
:IH
FN, —'A{V, AN = 1| :similar to Lem 1 case A

—R
IV AN = AN <(=AN) = =(=AN A -BN)
N SAY = —(=AN A =BN)
******************** cutwith 7 = ——71

N AN = ———(=AN A =BY)
N AN ~(=AN A -BN) = |

cut

—L

as desired. Similar for VR2.

Suppose last derivation is VL,

F(t),I'y = A
VeF(x), '} = A

VL

:IH
N AN PNt = L
[N AN Vo FN(z) = L

VL

Suppose last derivation is 3R,

I'= A, F(t)
I'= A,,3zF(x)

QiJi 5



Week 10 Exercises 1st April 2020

‘H

N AN -FNt) = L

N N N vt

'Y, Ay, Vo-FY(z) = L

N
IV AN = —Vz-FN(z)

****************** cutwith = ——r

IV AN = ———Vz-FN(x)

[N AN ——Vo—-FN(z) = L

—L
note =V—F"N(z) = (3zF(z))" as desired.
Suppose last derivation is VR with eigenvariable a,

I'= A, F(a)
I'= A,,VaF(x)

VR

PIH
N AN —FN(@) = L

cutwithLemmal — = — — — = — — — — — — =~
'V, AN = FN(a)
VR
N, AN = VaFN(2)
cutwithr = ——1 — =~ — - = — — — — — — = = — —

N AN = Vg FN(r)
N AN vz FN(z)= L

Suppose last derivation is 9L with eigenvariable a,

F(a),I'y = A
JzF(x), [} = A

JL

‘IH
N AN FN(a) = L
—R
I, ~AN = —FN(a)
N AN = vo—FN(z)
cutwith = —7 — == — = — — — — — — — — = = — —

Y, —AN = ——Vz-FN(z)
[N AN —Va—-FN(z)= L

as desired since (32 F (z))N = =Va—FN ().
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