MA6222 Exercise for Week 5

Qi Ji

19th February 2019

1

Prove $\alpha\mapsto \varphi_{\alpha}(0)$ is continuous.

Let $f(\alpha) = \varphi_{\alpha}(0)$ and $U \subseteq \mathbf{ON}$ be a nonempty set, we want $f(\sup U) = \sup f[U]$.

In the case where $\sup U = \max U$ result easily follows as f preserves order, so without loss of generality we consider the case where $\lambda = \sup U$ is a limit.

It suffices to show that

$$\sup f[U] = \sup_{\xi \in U} \min \operatorname{Cr}(\xi) \stackrel{?}{=} \min \bigcap_{\xi \in U} \operatorname{Cr}(\xi) = \min \bigcap_{\xi < \lambda} \operatorname{Cr}(\xi) = f(\lambda).$$

For any $\zeta \in U$,

$$\min \operatorname{Cr}(\zeta) \le \min \bigcap_{\xi \in U} \operatorname{Cr}(\xi).$$

Conversely we check that for all $\zeta \in U$,

$$\sup_{\xi\in U}\min\operatorname{Cr}(\xi)=\sup_{\xi\in U,\xi>\zeta}\min\operatorname{Cr}(\xi)\in\operatorname{Cr}(\zeta)$$

as $\xi > \zeta$ implies $\operatorname{Cr}(\xi) \subsetneq \operatorname{Cr}(\zeta)$ and $\operatorname{Cr}(\zeta)$ is closed, therefore $\sup_{\xi \in U} \min \operatorname{Cr}(\xi) \in \bigcap_{\xi \in U} \operatorname{Cr}(\xi)$. Now if $\alpha < \sup_{\xi \in U} \min \operatorname{Cr}(\xi)$, then $\alpha < \min \operatorname{Cr}(\zeta)$ for some $\zeta \in U$ which means $\alpha \notin \bigcap_{\xi \in U} \operatorname{Cr}(\xi)$. This shows the minimality.

2

 $SC := \{ \alpha : \varphi_{\alpha}(0) = \alpha \}. \text{ Prove lemma 4.30 which says } SC = \{ \alpha : \alpha > 0 \land \forall \xi, \eta < \alpha, \varphi_{\xi}(\eta) < \alpha \}.$

In general, each $\beta \in Cr(\alpha)$, satisfies for all $\xi < \alpha$, $\varphi_{\xi}[\beta] \subseteq \beta$. To see this let $\beta = \varphi_{\alpha}(\eta)$ and let $\gamma < \beta$, then by Theorem 4.25 (ii) 1

$$\varphi_{\xi}(\gamma) < \beta = \varphi_{\alpha}(\eta).$$

Now when $\alpha \in SC$, then as $\alpha \in Cr(\alpha)$ the desired closure property follows.

Conversely suppose $\alpha > 0$ satisfies the closure property, to show $\alpha \in SC$ it suffices to show that $\varphi_{\alpha}(0) \leq \alpha$. We first immediately observe that for all $\xi, \eta < \alpha, \xi + \eta \leq \varphi_{\xi}(0) + \eta \leq \varphi_{\xi}(\eta) < \alpha$, so $\alpha \in \mathbb{AP}$.

By induction on β we show $\beta < \varphi_{\alpha}(0) \implies \beta < \alpha$. If $\beta \notin \mathbb{AP}$ just use induction hypothesis as $\alpha \in \mathbb{AP}$. Now for the case that $\beta \in \mathbb{AP}$, $\beta = \varphi_{\xi}(\eta)$ for $\eta < \beta$. By φ -comparison, the only valid case for

$$\varphi_{\xi}(\eta) < \varphi_{\alpha}(0)$$

entails that $\xi < \alpha$, and by induction hypothesis $\eta < \alpha$ too, so $\beta = \varphi_{\xi}(\eta) < \alpha$.

3

Define $\psi: \varepsilon_0 \to \mathcal{F}$ recursively as follows,

$$\psi(0)(x)=0$$

and whenever $\alpha =_{NF} \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$,

$$\psi(\alpha)(x) = x^{\psi(\alpha_1)(x)} + \dots + x^{\psi(\alpha_n)(x)}$$

we can structurally induct to check that f is onto.

It remains to show $\alpha < \beta \implies \psi(\alpha) \prec \psi(\beta)$. We induct on β . Suppose $0 < \alpha < \beta$ ($\alpha = 0$ case is trivial) and

$$\begin{split} \alpha =_{NF} \omega^{\alpha_1} + \cdots + \omega^{\alpha_m} \\ \beta =_{NF} \omega^{\beta_1} + \cdots + \omega^{\beta_n} \end{split}$$

now compare the normal forms.

Case m < n and $\alpha_i = \beta_i$ for all $i \leq m$, then

 $\psi(\alpha)$ + some nonzero function = $\psi(\beta)$

so $\psi(\alpha) \prec \psi(\beta)$.

Case there exists j such that $\alpha_j < \beta_j$ and $\alpha_i = \beta_i$ for all $1 \le i < j$. By induction hypothesis as $\psi(\alpha_j) \prec \psi(\beta_j)$, so let k_0 such that for all $x \ge k_0$

$$\begin{split} \psi(\alpha_j)(x) + 1 &\leq \psi(\beta_j)(x) \\ x \cdot x^{\psi(\alpha_j)(x)} &\leq x^{\psi(\beta_j)(x)} \\ \underbrace{x^{\psi(\alpha_j)(x)} + \cdots + x^{\psi(\alpha_j)(x)}}_{x \text{ copies}} &\leq x^{\psi(\beta_j)(x)} \end{split}$$

Now choose $k \ge \max(m - j + 1, k_0)$ that also witnesses $\psi(\alpha_i) \prec \psi(\alpha_j)$ for all $j < i \le m$, that is whenever $x \ge k$, $\psi(\alpha_i)(x) < \psi(\alpha_j)(x)$.

Whenever $x \ge k$,

$$\begin{split} x^{\psi(\alpha_j)(x)} + \cdots + x^{\psi(\alpha_m)(x)} &\leq \underbrace{x^{\psi(\alpha_j)(x)} + \cdots + x^{\psi(\alpha_j)(x)}}_{m-j \text{ copies}} \\ &\leq \underbrace{x^{\psi(\alpha_j)(x)} + \cdots + x^{\psi(\alpha_j)(x)}}_{x \text{ copies}} \\ &\leq x^{\psi(\beta_j)(x)} \\ &\leq x^{\psi(\beta_j)(x)} + \cdots + x^{\psi(\beta_n)(x)} \end{split}$$

so it follows that

$$\psi(\alpha) \prec \psi(\beta).$$

So by induction ψ witnesses the isomorphism $(\varepsilon_0,<)\cong (\mathcal{F},\prec).$

The order type of one variable polynomials under \prec is $\omega^{\omega} = \psi^{-1}$ {one variable polynomials}.